Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 9, pp 1685–1691 | Cite as

Development of a miniaturized injection cell for online electrochemistry–capillary electrophoresis–mass spectrometry

  • Thomas Herl
  • Nicole Heigl
  • Frank-Michael Matysik
Original Paper
  • 44 Downloads

Abstract

The elucidation of oxidation or reduction pathways is important for the electrochemical characterization of compounds of interest. In this context, hyphenation of electrochemistry and mass spectrometry is frequently applied to identify products of electrochemical reactions. In this contribution, the development of a novel miniaturized injection cell for online electrochemistry–capillary electrophoresis–mass spectrometry (EC–CE–MS) is presented. It is based on disposable thin-film electrodes, which allow for high flexibility and fast replacement of electrode materials. Thus, high costs and time-consuming maintenance procedures can be avoided, which makes this approach interesting for routine applications. The cell was designed to be suitable for investigations in aqueous and particularly non-aqueous solutions making it a universal tool for a broad range of analytical problems. EC–CE–MS measurements of different ferrocene derivatives in non-aqueous solutions were carried out to characterize the cell. Oxidation products of ferrocene and ferrocenemethanol were electrochemically generated and could be separated from the decamethylferricenium cation. The importance of fast CE–MS analysis of instable oxidation products was demonstrated by evaluating the signal of the ferriceniummethanol cation depending on the time gap between electrochemical generation and detection.

Graphical abstract

Keywords

Capillary zone electrophoresis Electrochemistry Mass spectrometry Reaction mechanisms 

References

  1. 1.
    Arjmand F, Adriaens A (2014) J Solid State Electrochem 18:1779CrossRefGoogle Scholar
  2. 2.
    Chandrasekaran S, Chung JS, Kim EJ, Hur SH (2016) J Electrochem Sci Technol 7:1CrossRefGoogle Scholar
  3. 3.
    Tharali AD, Sain N, Osborne WJ (2016) Front Life Sci 9:252CrossRefGoogle Scholar
  4. 4.
    Gul T, Bischoff R, Permentier HP (2015) TrAC Trends Anal Chem 70:58CrossRefGoogle Scholar
  5. 5.
    Scholz R, Palatzky P, Matysik F-M (2014) Anal Bioanal Chem 406:687CrossRefPubMedGoogle Scholar
  6. 6.
    Cindric M, Vojs M, Matysik F-M (2015) Electroanalysis 27:234CrossRefGoogle Scholar
  7. 7.
    Erb R, Plattner S, Pitterl F, Brouwer H-J, Oberacher H (2012) Electrophoresis 33:614CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Baumann A, Lohmann W, Jahn S, Karst U (2010) Electroanalysis 22:286CrossRefGoogle Scholar
  9. 9.
    Karst U (2004) Angew Chem Int Ed 43:2476CrossRefGoogle Scholar
  10. 10.
    Jurva U, Wikström HV, Bruins AP (2000) Rapid Commun Mass Spectrom 14:529CrossRefPubMedGoogle Scholar
  11. 11.
    Jurva U, Wikström HV, Weidolf L, Bruins AP (2003) Rapid Commun Mass Spectrom 17:800CrossRefPubMedGoogle Scholar
  12. 12.
    Johansson T, Weidolf L, Jurva U (2007) Rapid Commun Mass Spectrom 21:2323CrossRefPubMedGoogle Scholar
  13. 13.
    Faber H, Vogel M, Karst U (2014) Anal Chim Acta 834:9CrossRefPubMedGoogle Scholar
  14. 14.
    Nouri-Nigjeh E, Permentier HP, Bischoff R, Bruins AP (2010) Anal Chem 82:7625CrossRefPubMedGoogle Scholar
  15. 15.
    Yuan T, Permentier H, Bischoff R (2015) TrAC Trends Anal Chem 70:50CrossRefGoogle Scholar
  16. 16.
    Bussy U, Boisseau R, Thobie-Gautier C, Boujtita M (2015) TrAC Trends Anal Chem 70:67CrossRefGoogle Scholar
  17. 17.
    Jurva U, Weidolf L (2015) TrAC Trends Anal Chem 70:92CrossRefGoogle Scholar
  18. 18.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, HobokenGoogle Scholar
  19. 19.
    Portychová L, Schug KA (2017) Anal Chim Acta 993:1CrossRefPubMedGoogle Scholar
  20. 20.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Science 246:64CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou F, Van Berkel GJ (1995) Anal Chem 67:3643CrossRefGoogle Scholar
  22. 22.
    Liu P, Zheng Q, Dewald HD, Zhou R, Chen H (2015) TrAC Trends Anal Chem 70:20CrossRefGoogle Scholar
  23. 23.
    Lohmann W, Baumann A, Karst U (2010) LCGC N Am 28:470Google Scholar
  24. 24.
    Bruins AP (2015) TrAC Trends Anal Chem 70:14CrossRefGoogle Scholar
  25. 25.
    van den Brink FTG, Olthuis W, van den Berg A, Odijk M (2015) TrAC Trends Anal Chem 70:40CrossRefGoogle Scholar
  26. 26.
    Herl T, Matysik F-M (2017) Tech Mess 84:672CrossRefGoogle Scholar
  27. 27.
    Jaklová Dytrtová J, Jakl M, Navrátil T, Cvačka J, Pačes O (2016) Electrochim Acta 211:787CrossRefGoogle Scholar
  28. 28.
    Diehl G, Liesener A, Karst U (2001) Analyst 126:288CrossRefPubMedGoogle Scholar
  29. 29.
    Wang X, Li K, Adams E, Van Schepdael A (2013) Curr Drug Metab 14:807CrossRefPubMedGoogle Scholar
  30. 30.
    Mark JJP, Piccinelli P, Matysik F-M (2014) Anal Bioanal Chem 406:6069CrossRefPubMedGoogle Scholar
  31. 31.
    Esaka Y, Okumura N, Uno B, Goto M (2003) Electrophoresis 24:1635CrossRefPubMedGoogle Scholar
  32. 32.
    Matysik F (2003) Electrochem Commun 5:1021CrossRefGoogle Scholar
  33. 33.
    Palatzky P, Zöpfl A, Hirsch T, Matysik F-M (2013) Electroanalysis 25:117CrossRefGoogle Scholar
  34. 34.
    Singh A, Chowdhury DR, Paul A (2014) Analyst 139:5747CrossRefPubMedGoogle Scholar
  35. 35.
    Bashkin JK, Kinlen PJ (1990) Inorg Chem 29:4507CrossRefGoogle Scholar
  36. 36.
    Jaklová Dytrtová J, Jakl M, Navrátil T, Schröder D (2013) Int J Electrochem Sci 8:1623Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Herl
    • 1
  • Nicole Heigl
    • 1
  • Frank-Michael Matysik
    • 1
  1. 1.Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgRegensburgGermany

Personalised recommendations