Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 2, pp 237–252 | Cite as

Neptunium(VI) solubility in alkaline CaCl2 solutions: evidence for the formation of calcium neptunates Ca x NpO3+x (s,hyd)

  • David FellhauerEmail author
  • Xavier Gaona
  • Jörg Rothe
  • Marcus Altmaier
  • Thomas Fanghänel
Original Paper

Abstract

The solubility behavior of hexavalent neptunium (Np) was systematically investigated as function of [CaCl2] = 0.25–4.5 mol dm−3 [0.252–5.26 mol (kg H2O)−1] and pHm 8–12 (pHm = − log{m(H+)/mol (kg H2O)−1}) under oxidizing conditions adjusted by hypochlorite. As solubility limiting Np(VI) solid phase, hitherto unknown, non-stoichiometric calcium neptunates, Ca x NpO3+x (s,hyd), were identified by applying a wide range of analytical techniques including quantitative chemical analysis, powder XRD, Np L3-edge XANES, and SEM–EDX. The Ca:Np ratio in the equilibrium solid phase increased systematically with the pHm values in the batch solubility samples, and ranged between 0.60:1 and 1.66:1. For pHm > 10.5, the solubility of the calcium neptunates is around log{[Np]/mol (kg H2O)−1} ≈ − 6.1 ± 0.4 and does not show a strong dependence on [CaCl2]. For pHm < 10.5, log [Np] ranges from − 6.6 in 0.25 mol dm−3 CaCl2 to − 3.6 in 4.5 mol dm−3 CaCl2, and increases systematically with [CaCl2]. Based on the solubility data, the principle solid–liquid equilibrium reactions were qualitatively evaluated. The results for Np(VI) obtained in the present work were found to be different from the behavior of U(VI) in alkaline CaCl2 solutions, where the well-defined crystalline CaU2O7·3H2O(cr) phase controls the U(VI) solubility over a wide range of pHm and [CaCl2] conditions.

Graphical abstract

Keywords

Neptunium(VI) Calcium neptunates Hydrolytic behavior Calcium chloride brines Thermodynamics Np L3-edge XANES 

Notes

Acknowledgements

Technical support by V. Petrov (Moscow State University), S. Moisei-Rabung and P. Leske (KIT—Institute for Nuclear Waste Disposal) is gratefully acknowledged.

Supplementary material

706_2017_2116_MOESM1_ESM.xlsx (28 kb)
Supplementary material 1 (XLSX 27 kb)

References

  1. 1.
    Guillaumont R, Fanghänel Th, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Chemical thermodynamics vol. 5, update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Elsevier, North-HollandGoogle Scholar
  2. 2.
    Morss LR, Edelstein NM, Fuger J (2008) The chemistry of the actinide and transactinide elements. Springer, DordrechtGoogle Scholar
  3. 3.
    Neck V, Altmaier M, Fanghänel T (2007) C R Chim (France) 10:959CrossRefGoogle Scholar
  4. 4.
    Gaona X, Fellhauer D, Altmaier M (2013) Pure Appl Chem 85:2027CrossRefGoogle Scholar
  5. 5.
    Cassol A, Magon L, Tomat G, Portanova R (1972) Inorg Chem 11:515CrossRefGoogle Scholar
  6. 6.
    Kato Y, Kimura T, Yoshida Z, Nitani N (1996) Radiochim Acta 74:21CrossRefGoogle Scholar
  7. 7.
    Gaona X, Tits J, Dardenne K, Liu X, Denecke MA, Wieland E, Altmaier M (2012) Radiochim Acta 100:759CrossRefGoogle Scholar
  8. 8.
    Bagnall KW, Laidler JB (1964) J Chem Soc 2693.  https://doi.org/10.1039/jr9640002693
  9. 9.
    Saito T, Wang J, Kitazawa T, Takahashi M, Takeda M, Nakada M, Nakamoto T, Masaki NM, Yamashita T, Saeki M (1999) Radioanal Nucl Chem 239:319CrossRefGoogle Scholar
  10. 10.
    Keller C, Koch L, Walter KH (1965) J Inorg Nucl Chem 27:1205CrossRefGoogle Scholar
  11. 11.
    Williams CW, Blaudeau J-P, Sullivan JC, Antonio MR, Bursten B, Soderholm L (2001) J Am Chem Soc 123:4346CrossRefGoogle Scholar
  12. 12.
    Bolvin H, Wahlgren U, Moll H, Reich T, Geipel G, Fanghänel T, Grenthe I (2001) J Phys Chem A 105:11441CrossRefGoogle Scholar
  13. 13.
    Gaona X, Wieland E, Tits J, Scheinost A, Dähn R (2013) Appl Geochem 28:109CrossRefGoogle Scholar
  14. 14.
    Clark DL, Conradson SD, Donohoe RJ, Gordon PL, Keogh DW, Palmer PD, Scott BL, Tait CD (2013) Inorg Chem 52:3547CrossRefGoogle Scholar
  15. 15.
    Neck V, Altmaier M, Rabung T, Lützenkirchen J, Fanghänel T (2009) Pure Appl Chem 81:1555CrossRefGoogle Scholar
  16. 16.
    Altmaier M, Neck V, Fanghänel T (2008) Radiochim Acta 96:541CrossRefGoogle Scholar
  17. 17.
    Fellhauer D, Neck V, Altmaier M, Lützenkirchen J, Fanghänel T (2010) Radiochim Acta 98:541CrossRefGoogle Scholar
  18. 18.
    Yalcintas E, Gaona X, Altmaier M, Dardenne K, Polly R, Geckeis H (2016) Dalton Trans 45:8916CrossRefGoogle Scholar
  19. 19.
    Fellhauer D, Rothe J, Altmaier M, Neck V, Runke J, Wiss T, Fanghänel T (2016) Radiochim Acta 104:355Google Scholar
  20. 20.
    Fellhauer D, Altmaier M, Gaona X, Lützenkirchen J, Fanghänel T (2016) Radiochim Acta 104:381Google Scholar
  21. 21.
    Altmaier M, Neck V, Müller R, Fanghänel T (2005) Abstract No. A1-3, 10th international conference on chemistry and migration behaviour of actinides and fission products in the geosphere. Avignon, FranceGoogle Scholar
  22. 22.
    Vochten R, van Haverbeke L (1990) Mineral Petrol 43:65CrossRefGoogle Scholar
  23. 23.
    Sandino MCA, Grambow B (1994) Radiochim Acta 66/67:37CrossRefGoogle Scholar
  24. 24.
    Rai D, Felmy AR, Hess NJ, LeGore VL, McCready DE (2002) Radiochim Acta 90:495CrossRefGoogle Scholar
  25. 25.
    Diaz Arocas P, Grambow B (1998) Geochim Cosmochim Acta 62:245CrossRefGoogle Scholar
  26. 26.
    Allen PG, Shuh DK, Bucher JJ, Edelstein NM, Palmer CEA, Silva RJ, Nguyen SN, Marquez LN, Hudson EA (1996) Radiochim Acta 75:47CrossRefGoogle Scholar
  27. 27.
    Altmaier M, Yalcintas E, Gaona X, Neck V, Müller R, Schlieker M, Fanghänel T (2017) J Chem Therm 114:2CrossRefGoogle Scholar
  28. 28.
    Pashalidis I, Kim JI, Lierse C, Sullivan JC (1993) Radiochim Acta 60:99CrossRefGoogle Scholar
  29. 29.
    Hagan PG, Cleveland JM (1966) J Inorg Nucl Chem 28:2905CrossRefGoogle Scholar
  30. 30.
    Runde W, Neu MP, Conradson SD, Clark DL, Palmer PD, Reilly SD, Scott BL, Tait CD (1996) Mat Res Soc Symp Proc 465:693CrossRefGoogle Scholar
  31. 31.
    Hartmann T, Paviet-Hartmann P, Wetteland C, Lu N (2003) Rad Phys Chem 66:335CrossRefGoogle Scholar
  32. 32.
    Nguyen-Trung C (2002) Ph.D. thesis, University of NancyGoogle Scholar
  33. 33.
    Clark DL, Conradson SD, Neu MP, Palmer PD, Runde W, Tait CD (1997) J Am Chem Soc 119:5259CrossRefGoogle Scholar
  34. 34.
    Lippmann F (1977) Neues Jahrb Mineral. Abh 130:243Google Scholar
  35. 35.
    Gamsjäger H, Königsberger E, Preis W (2000) Aquat Geochem 6:119CrossRefGoogle Scholar
  36. 36.
    Reilly SD, Neu MP (2006) Inorg Chem 45:1839CrossRefGoogle Scholar
  37. 37.
    Rothe J, Butorin S, Dardenne K, Denecke MA, Kienzler B, Löble M, Metz V, Seibert A, Steppert M, Vitova T, Walther C, Geckeis H (2012) Rev Sci Instrum 83:1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute for Nuclear Waste DisposalKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute for Transuranium Elements, European CommissionKarlsruheGermany
  3. 3.Institute of Physical ChemistryHeidelberg UniversityHeidelbergGermany

Personalised recommendations