Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 2, pp 423–429 | Cite as

Speciation and equilibria in the H+–Al3+ - polyacrylic acid system

  • Johannes LützenkirchenEmail author
  • Staffan Sjöberg
Original Paper


Equilibria between Al3+ and the polyelectrolyte polyacrylic acid (PAA) were studied in 0.1 M NaCl medium at 25 °C (M = mol dm−3). The measurements were performed as precise potentiometric titrations in which OH was in most cases generated coulometrically. The total concentration of Al(III) and PAA varied within the limits 6.23 × 10−5–2.01 × 10−4 M and 7.20 × 10−4–1.12 × 10−3 M, resp., with a 4–18 fold excess of ligand. The value of − log{[H+]/mol dm−3} varied between 3 and 5–7, the upper limit set by drifting EMF potentials caused by the onset of a precipitation reaction. The constant capacitance model was utilized to model the experimental data. With the objective of finding a model as simple as possible that gives an acceptable fit to data, the two species AlPAA2+ and Al(OH)2PAA are postulated. The polyelectrolyte effect resulting in pH-dependent formation constants is demonstrated. Furthermore a comparison between the stability constant of the 1:1 complexes of Al3+ with acrylate and PAA, respectively, shows the logK value of the latter to be five units higher and is ascribed to particular properties of the polyelectrolyte.

Graphical abstract

Open image in new window


Stability constants Carboxylic acids Acidity Potentiometric titrations Surface complexation modelling Constant capacitance model 



The contributions of Heinz Gamsjäger to surface complexation were early, but  will be lasting. We are grateful for the various possibilities to meet Heinz over the years and will continue to remember him as the successful scientist and friendly and sociable person he was.


  1. 1.
    Geoderma (2000), 94(2–4)Google Scholar
  2. 2.
    Pettit LD, Powell KJ (2010) SC-Database, IUPAC Stability Constants Database. Release 5.8. IUPAC; Academic Software, Otley, UK; for availability, see
  3. 3.
    Fenn-Barrabaß C, Pohlmeier A, Knoche W, Narres H, Schwuger MJ (1998) Colloid Polym Sci 276:627CrossRefGoogle Scholar
  4. 4.
    Etou M, Masaki Y, Tsuji Y, Saito T, Bai S, Nishida I, Yoshihitro O, Yokoyama T (2011) Anal Sci 27:111CrossRefGoogle Scholar
  5. 5.
    Lützenkirchen J, van Male J, Leermakers F, Sjöberg S (2011) J Chem Eng Data 56:1602CrossRefGoogle Scholar
  6. 6.
    Schindler PW, Kamber HR (1968) Chim Acta 51:1781CrossRefGoogle Scholar
  7. 7.
    Schindler PW, Gamsjäger H (1972) Kolloid-Z 250:759CrossRefGoogle Scholar
  8. 8.
    Stumm W, Huang CP, Jenkins SR (1970) Croat Chem Acta 42:223Google Scholar
  9. 9.
    Koltoff M, Sandell EB (1969) Quantitative chemicaly analysis. Macmillan, LondonGoogle Scholar
  10. 10.
    Öhman L-O, Sjöberg S (1996) Coord Chem Rev 149:33CrossRefGoogle Scholar
  11. 11.
    Sjöberg S, Hägglund Y, Nordin A, Ingri N (1983) Mar Chem 13:35CrossRefGoogle Scholar
  12. 12.
    Öhman L-O, Lövgren L, Hedlund T, Sjöberg S (2006) The ionic strength dependency of mineral solubility and chemical speciation in solution. In: Lützenkirchen J (ed) Surface complexation modelling, vol 11. Elsevier, London, p 1CrossRefGoogle Scholar
  13. 13.
    Kulik DA, Lützenkirchen J, Payne TE (2010) Geochim Cosmochim Acta 544(12 Supplement 1):544Google Scholar
  14. 14.
    Kulik DA, Lützenkirchen J (2011) Mineral Mag 75:1251Google Scholar
  15. 15.
    Wang Z, Giammar DE (2013) Environ Sci Technol 47:3982CrossRefGoogle Scholar
  16. 16.
    Lützenkirchen J, Marsac R, Kulik DA, Payne TE, Xue Z, Orsetti S, Haderlein SB (2015) Appl Geochem 55:128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institut für Nukleare EntsorgungKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Department of ChemistryUmeå UniversityUmeåSweden

Personalised recommendations