Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 148, Issue 11, pp 1937–1944 | Cite as

Graphene and graphene oxide for biosensing

  • Ondrej KubesaEmail author
  • Veronika Horackova
  • Zdenek Moravec
  • Zdenek Farka
  • Petr Skladal
Original Paper

Abstract

Graphene-based nanomaterials attract large attention in electrochemistry due to their unique properties. Reliable method to modify electrodes by graphene is necessary to obtain desired improvement. In this work, different sizes of graphite flakes for preparation of graphene oxide (GO) were tested and the final characterization of the resulting GO was focused on a quick and reliable methods such as Raman and UV–Vis spectroscopy, atomic force microscopy, and surface plasmon resonance. Smaller particles resulted in bigger yield with higher stage of oxidation. Although the average thickness of GO was ~1 nm, differences between GO and by ascorbic acid chemically reduced GO were minimal in topography. The binding and stability of reduced GO on gold surface and gold modified by cysteamine were studied by surface plasmon resonance and cyclic voltammetry. The cysteamine provided slightly higher loading capacity compared to bare gold electrode; however, cyclic voltammetry proved that the electrochemical properties are identical, and therefore, cysteamine is not in this case necessary for GO immobilization.

Graphical abstract

Keywords

Biosensors Electrochemistry UV/Vis spectroscopy Raman spectroscopy Atomic force microscopy Surface plasmon resonance 

Notes

Acknowledgements

The work has been supported by MUNI/A/1265/2015—Support of biochemical research at MU and by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601).

References

  1. 1.
    Geim AK (2009) Science 324:1530CrossRefGoogle Scholar
  2. 2.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282CrossRefGoogle Scholar
  3. 3.
    Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) TrAC, Trends Anal Chem 29:954CrossRefGoogle Scholar
  4. 4.
    Zhou M, Zhai Y, Dong S (2009) Anal Chem 81:5603CrossRefGoogle Scholar
  5. 5.
    Wang Z, Zhou X, Zhang J, Boey F, Zhang H (2009) J Phys Chem C 113:14071CrossRefGoogle Scholar
  6. 6.
    Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Nano Lett 8:3137CrossRefGoogle Scholar
  7. 7.
    Szabó T, Berkesi O, Dékány I (2005) Carbon 43:3186CrossRefGoogle Scholar
  8. 8.
    Schafhaeutl C (1840) J Prakt Chem 21:129CrossRefGoogle Scholar
  9. 9.
    Brodie BC (1859) Philos Trans R Soc Lond 149:249CrossRefGoogle Scholar
  10. 10.
    Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339CrossRefGoogle Scholar
  11. 11.
    Pei S, Cheng H-M (2012) Carbon 50:3210CrossRefGoogle Scholar
  12. 12.
    Pei S, Zhao J, Du J, Ren W, Cheng H-M (2010) Carbon 48:4466CrossRefGoogle Scholar
  13. 13.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558CrossRefGoogle Scholar
  14. 14.
    Park S, Ruoff RS (2009) Nat Nanotechnol 4:217CrossRefGoogle Scholar
  15. 15.
    Pumera M (2013) Electrochem Commun 36:14CrossRefGoogle Scholar
  16. 16.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806CrossRefGoogle Scholar
  17. 17.
    Alwarappan S, Erdem A, Liu C, Li C-Z (2009) J Phys Chem C 113:8853CrossRefGoogle Scholar
  18. 18.
    Childres I, Jauregui LA, Park W, Cao H, Chen YP (2013) Raman spectroscopy of graphene and related materials. New Developments in Photon and Materials Research. Nova Science Publishers, HauppaugeGoogle Scholar
  19. 19.
    Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Chem Commun 46:1112CrossRefGoogle Scholar
  20. 20.
    Sobon G, Sotor J, Jagiello J, Kozinski R, Zdrojek M, Holdynski M, Paletko P, Boguslawski J, Lipinska L, Abramski KM (2012) Opt Express 20:19463CrossRefGoogle Scholar
  21. 21.
    Guo Y, Sun X, Liu Y, Wang W, Qiu H, Gao J (2012) Carbon 50:2513CrossRefGoogle Scholar
  22. 22.
    Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101CrossRefGoogle Scholar
  23. 23.
    Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) J Phys Chem C 114:6426CrossRefGoogle Scholar
  24. 24.
    Sheshmani S, Amini R (2013) Carbohydr Polym 95:348CrossRefGoogle Scholar
  25. 25.
    Si Y, Samulski ET (2008) Nano Lett 8:1679CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of ScienceMasaryk University, BrnoBrnoCzech Republic
  2. 2.Central European Institute of TechnologyMasaryk University, BrnoBrnoCzech Republic
  3. 3.Department of Chemistry, Faculty of ScienceMasaryk University, BrnoBrnoCzech Republic

Personalised recommendations