Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 148, Issue 5, pp 939–946 | Cite as

Synthesis of a series of tetraminic acid sulfone analogs

  • Maria V. Popova
  • Alexey V. DobrydnevEmail author
  • Maksim S. Dyachenko
  • Carine Duhayon
  • Dymytrii Listunov
  • Yulian M. Volovenko
Original Paper

Abstract

We have introduced a strategy for the construction of spirocycloalkane 1λ6-isothiazolidine-1,1,4-triones through the mesylation of 1-aminocyclopentane-, 1-aminocyclohexane-, and 1-aminocycloheptanecarboxylic acid esters with methanesulfonylchloride followed by alkylation with methyl iodide and consequent cyclization in the presence of potassium tert-butoxide in N,N-dimethylformamide. The spirocycloalkane 4-amino-2,3-dihydro-1H-1λ6-isothiazole-1,1-diones were prepared via mesylation of N-methylated 1-aminocyclopentyl-, 1-aminocyclohexyl-, and 1-aminocycloheptyl carbonitriles followed by treatment of obtained N-(1-cyanocycloalkyl)-N-methylmethanesulfonamides with potassium tert-butoxide in N,N-dimethylformamide. The spiro 4-amino-2,3-dihydro-1H-1λ6-isothiazole-1,1-diones were converted into the target spiro 1λ6-isothiazolidine-1,1,4-triones by acid-catalyzed hydrolysis. The structure of a target spiro compound and its isolated key intermediate was confirmed by X-ray diffraction study. The interaction of spiro 1λ6-isothiazolidine-1,1,4-triones with N,N-dimethylformamide dimethyl acetal leads to the formation of spiro 5-[(Z)-(dimethylamino)methylidene]-1λ6-isothiazolidine-1,1,4-triones.

Graphical abstract

Keywords

Spiro compounds Sulfonamides Amino acids Aminonitriles Cyclization X-ray structure determination 

Notes

Acknowledgements

We would also like to show our gratitude to Kitty Dobrydneva for sharing her pearls of wisdom with us during the course of this research, and we thank “anonymous” reviewers for their so-called insights.

References

  1. 1.
    Royles BJL (1995) Chem Rev 95:1981CrossRefGoogle Scholar
  2. 2.
    Schobert R, Schlenk A (2008) Bioorg Med Chem 16:4203CrossRefGoogle Scholar
  3. 3.
    Tuske S, Sarafianos SG, Wang X, Hudson BB, Sineva E, Mukhopadhyay J, Birktoft JJ, Leroy O, Ismail S, Clark AD Jr, Dharia C, Napoli A, Laptenko O, Lee J, Borukhov S, Ebright RH, Arnold E (2005) Cell 122:541CrossRefGoogle Scholar
  4. 4.
    Aoki S, Higuchi K, Ye Y, Satari R, Kobayashi M (2000) Tetrahedron 56:1833CrossRefGoogle Scholar
  5. 5.
    Phillips NJ, Goodwin JT, Fraiman A, Cole RJ, Lynn DG (1989) J Am Chem Soc 111:8223CrossRefGoogle Scholar
  6. 6.
    Marfori EC, Kajiyama S, Fukusaki E-I, Kobayashi A (2002) Z Naturforsch 57:465Google Scholar
  7. 7.
    Holtzel A, Ganzle MG, Nicholson GJ, Hammes WP, Jung G (2000) Angew Chem Int Ed 39:2766CrossRefGoogle Scholar
  8. 8.
    Marquardt U, Schmid D, Jung G (2000) Synlett 8:1131Google Scholar
  9. 9.
    Athanasellis G, Igglessi-Markopoulou O, Markopoulos J (2010) Bioinorg Chem Appl 2010. doi: 10.1155/2010/315056)
  10. 10.
    Fischer R, Lehr S, Feucht D, Loesel P, Malsam O, Bojack G, Auler T, Hills MJ, Kehne H, Rosinger CH (2005) 2-Ethyl-4,6-dimethylphenyl-substituted tetramic acid derivatives as pest control agents and/or herbicides. Chem Abstr 143:2637 (international patent WO 2005048710, 02 June 2005)Google Scholar
  11. 11.
    Stachel H-D, Drasch G (1985) Arch Pharm 318:304CrossRefGoogle Scholar
  12. 12.
    Dobrydnev AV, Popova MV, Saffon-Merceron N, Listunov D, Volovenko YuM (2015) Synthesis 47:2523Google Scholar
  13. 13.
    Palacin S, Chin DN, Simanek EE, MacDonald JC, Whitesides GM, McBride MT, Palmore GTR (1997) J Am Chem Soc 119:11807CrossRefGoogle Scholar
  14. 14.
    Henze HR, Speer RJ (1942) J Am Chem Soc 64:522CrossRefGoogle Scholar
  15. 15.
    Tsang JW, Schmied B, Nyfeler R, Goodman M (1984) J Med Chem 27:1663CrossRefGoogle Scholar
  16. 16.
    Schiller PW, Weltrowska G, Nguyen TMD, Lemieux C, Chung NN, Marsden BJ, Wilkes BC (1991) J Med Chem 34:3125CrossRefGoogle Scholar
  17. 17.
    Ryan CW, Ainsworth C (1962) J Org Chem 27:2901CrossRefGoogle Scholar
  18. 18.
    Kalir A, Teomy S, Amir A, Fuchs P, Lee SA, Holsztynska EJ, Rocki W, Domino EF (1984) J Med Chem 27:1267CrossRefGoogle Scholar
  19. 19.
    Bakthavatchalam R, Ihle DC, Capitosti SM, Wustrow DJ, Yuan J (2009) Heteroaryl amide analogues. Chem Abstr 151:337205 (international patent WO2009108551, 03 Sep 2009)Google Scholar
  20. 20.
    Abu-Shanab FA, Sherif MS, Mousaa S (2009) J Het Chem 46:801CrossRefGoogle Scholar
  21. 21.
    Brahma S, Ray JK (2008) Tetrahedron 64:2883CrossRefGoogle Scholar
  22. 22.
    Stanovnik B, Svete J (2004) Chem Rev 104:2433CrossRefGoogle Scholar
  23. 23.
    Perrin DD, Armarego IF, Perrin DR (1980) Purification of laboratory chemicals, 2nd edn. Pergamon Press, New YorkGoogle Scholar
  24. 24.
    CrysAlisPro software system (2011) Version 1.171.35.19Google Scholar
  25. 25.
    Blessing RH (1995) Acta Cryst a51:33Google Scholar
  26. 26.
    Palatinus L, Chapuis G (2007) J Appl Cryst 40:786CrossRefGoogle Scholar
  27. 27.
    Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) J Appl Cryst 36:1487CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Maria V. Popova
    • 1
    • 2
  • Alexey V. Dobrydnev
    • 1
    Email author
  • Maksim S. Dyachenko
    • 1
    • 2
  • Carine Duhayon
    • 3
  • Dymytrii Listunov
    • 3
  • Yulian M. Volovenko
    • 1
  1. 1.Chemistry DepartmentTaras Shevchenko National University of KievKievUkraine
  2. 2.Enamine Ltd.KievUkraine
  3. 3.UPR CNRS 8241, LCCToulouseFrance

Personalised recommendations