Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 147, Issue 7, pp 1167–1175 | Cite as

Development of d,l-α-tocopherol acetate/zeolite carrier system: equilibrium study

  • Zvezdelina YanevaEmail author
  • Nedyalka Georgieva
  • Manuela Staleva
Original Paper

Abstract

The wide and efficient biomedical applications of zeolite materials provoked, in recent years, the development of a new trend in biomedical sciences and engineering, namely the development of innovative drug-delivery systems based on zeolite materials. The present study investigated a process for the development of a new antioxidant–carrier system, emphasizing on the extent of d,l-α-tocopherol acetate encapsulation in the framework of natural zeolite and on the mechanism of its sorption at equilibrium conditions. UV/Vis, FT-IR, SEM, and potentiometric analyses were conducted to provide data on the spectral, morphological, and physicochemical characteristics of a novel d,l-α-tocopherol acetate/zeolite carrier system. The experimental sorption equilibrium isotherms were described by ten mathematical models by means of non-linear analyses. The effect of pH on the absorption spectra of d,l-α-tocopherol acetate and on its adsorption behavior was studied. The maximum achieved equilibrium sorption capacity of zeolite toward the antioxidant was q max = 9.9 μg/mg. The integrative analyses of the values of the correlation coefficients and error functions together with the mode of the experimental and model isotherms established that Sips and Redhead models best represented the equilibrium sorption behavior of the studied system. The optimum pH for α-tocopherol encapsulation on zeolite was established to be pH 6.5–7.0.

Graphical abstract

Keywords

Vitamin E Zeolite Adsorption UV/Vis spectroscopy FT-IR 

List of symbols

aK

Khan model exponent

aL

Langmuir isotherm constant, dm3/mg

aR

Redlich–Peterson isotherm constant, dm3/mg

aRP

Radke–Prausnitz maximum sorption capacity, mg/g

as

Sips isotherm model constant, dm3/mg

b

Redlich–Peterson isotherm constant (0 < b < 1)

BBET

BET equilibrium constant

bK

Khan equilibrium constant

ce

Equilibrium sorbate concentration in the liquid phase, mg/dm3

CL

Confidence limit

co

Initial sorbate concentration in the liquid phase, mg/dm3

CSbet

BET equilibrium parameter

CsRH

Redhead equilibrium parameter

K1

Fritz–Schlunder isotherm constant, dm3/g

K2

Fritz–Schlunder isotherm constant, dm3/g

KF

Freundlich isotherm constant, dm3/g

KH

Hill model constant

KL

Langmuir isotherm constant, dm3/g

KR

Redlich–Peterson isotherm constant, dm3/g

KS

Sips isotherm model constant, dm3/g

m1

Fritz–Schlunder model exponent

m2

Fritz–Schlunder model exponent

nF

Heterogeneity factor in the Freundlich model

nH

Hill cooperativity coefficient of the binding interaction

nRH

Redhead model exponent

QBET

BET maximum sorption capacity, mg/g

qe

Equilibrium sorbate concentration in the solid phase, mg/g

qK

Khan maximum sorption capacity, mg/g

qmax

Maximum experimental sorption capacity, mg/g

qMfs

Fritz–Schlunder maximum sorption capacity, mg/g

qmRH

Redhead maximum sorption capacity, mg/g

qS

Sips maximum sorption capacity, mg/g

qsH

Hill maximum sorption capacity, mg/g

qt

Sorption capacity at time t, mg/g

R2

Correlation coefficient

RMSE

Root-mean-square error

rR

Radke–Prausnitz equilibrium constant

SSE

Sum of squares of error

T

Temperature, K

t

Time, min

V

Solution volume, dm3, cm3

w

Sorbent mass, g

βR

Radke–Prausnitz model exponent

βs

Sips isotherm model exponent

λ

Maximum absorbance wavelength, nm

χ2

Chi-square error function

Notes

Acknowledgments

The study was supported financially by Scientific Project No. 14-15 VMF, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria.

References

  1. 1.
    Yoo SH, Song YB, Chang PS, Lee HG (2006) Int J Biol Macromol 38:25CrossRefGoogle Scholar
  2. 2.
    Faizal CKM, Hoshina Y, Kobayashi T (2008) J Memb Sci 322:503CrossRefGoogle Scholar
  3. 3.
    Piorkowski DT, McClements DJ (2014) Food Hydrocolloids 42:5CrossRefGoogle Scholar
  4. 4.
    Hategekimana J, Masamba KG, Ma J, Zhong F (2015) Carbohydr Polym 124:172CrossRefGoogle Scholar
  5. 5.
    Hartmann M, Vinu A, Chandrasekar G (2005) Chem Mater 17:829CrossRefGoogle Scholar
  6. 6.
    Sirakov I, Velichkova K, Stoyanova S, Dinev D, Staikov Y (2015) Bulg J Agric Sci 21:147Google Scholar
  7. 7.
    Tomashevich-Canovich M (2005) J Serb Chem Soc 70:1335CrossRefGoogle Scholar
  8. 8.
    Yaneva Z, Staleva M, Georgieva N (2015) Eur J Chem 6:169CrossRefGoogle Scholar
  9. 9.
    Georgieva N, Yaneva Z (2015) Cogent Chemistry 1:1CrossRefGoogle Scholar
  10. 10.
    Che Man YB, Mirghani MES (2000) J Am Oil Chem Soc 77:631Google Scholar
  11. 11.
    Guillen MD, Cabo N (1997) J Sci Food Agric 75:1CrossRefGoogle Scholar
  12. 12.
    Che Man YB, Ammawath W, Mirghani MES (2005) Food Chem 90:323Google Scholar
  13. 13.
    Kumara NTRN, Hamdan N, Petra MI, Tennakoon KU, Ekanayake P (2014) J Chem 468975Google Scholar
  14. 14.
    Langmuir I (1918) J Am Chem Soc 40:1361CrossRefGoogle Scholar
  15. 15.
    Freundlich H (1907) Z Phys Chem 57A:385Google Scholar
  16. 16.
    Redlich O, Peterson DL (1959) J Phys Chem 63:1024CrossRefGoogle Scholar
  17. 17.
    Sips R (1948) J Chem Phys 16:490CrossRefGoogle Scholar
  18. 18.
    Radke CJ, Prausnitz JM (1972) AlChE J 18:761CrossRefGoogle Scholar
  19. 19.
    Khan AR, Al-Waheab IR, Al-Haddad A (1996) Environ Technol 17:13CrossRefGoogle Scholar
  20. 20.
    Hill AV (1910) J Physiol (London) 40:4Google Scholar
  21. 21.
    Fritz W, Schluender EU (1974) Chem Eng Sci 29:1279CrossRefGoogle Scholar
  22. 22.
    Bruanuer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefGoogle Scholar
  23. 23.
    Redhead PA (1996) Langmuir 12:763CrossRefGoogle Scholar
  24. 24.
    Foo KY, Hameed BH (2010) Chem Eng J 156:2CrossRefGoogle Scholar
  25. 25.
    Allen SJ, Mckay G, Porter JF (2004) J Colloid Interface Sci 280:322CrossRefGoogle Scholar
  26. 26.
    Dotto GL, Vieira MLG, Esquerdo VM, Pinto LAA (2013) Braz J Chem Eng 30:13CrossRefGoogle Scholar
  27. 27.
    Hossain MA, Ngo HH, Guo WS, Nguyen TV (2012) Bioresour Technol 113:97CrossRefGoogle Scholar
  28. 28.
    Senthil Kumar P, Ramalingam S, Senthamarai C, Niranjana M, Vijayalakshmi P, Sivanesan S (2010) Desalination 261:52Google Scholar
  29. 29.
    Sivarajasekar N, Baskar R (2014) Arabian J Chem 1Google Scholar
  30. 30.
    Saadi R, Saadi Z, Fazaeli R, Fard NE (2015) Korean J Chem Eng 32:787CrossRefGoogle Scholar
  31. 31.
    Allen SJ, Ivanova E, Koumanova B (2009) Chem Eng J 152:389CrossRefGoogle Scholar
  32. 32.
    Boehm HP (1994) Carbon 32:759CrossRefGoogle Scholar
  33. 33.
    Hameed BH (2010) J Hazard Mater 162:939CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Zvezdelina Yaneva
    • 1
    Email author
  • Nedyalka Georgieva
    • 1
  • Manuela Staleva
    • 2
  1. 1.Chemistry Unit, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary MedicineTrakia UniversityStara ZagoraBulgaria
  2. 2.University “Prof. d‐r Assen Zlatarov”BourgasBulgaria

Personalised recommendations