Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 147, Issue 5, pp 905–918 | Cite as

Antiviral activity of fullerene C60 nanocrystals modified with derivatives of anionic antimicrobial peptide maximin H5

  • Simona Dostalova
  • Amitava Moulick
  • Vedran Milosavljevic
  • Roman Guran
  • Marketa Kominkova
  • Kristyna Cihalova
  • Zbynek Heger
  • Lucie Blazkova
  • Pavel Kopel
  • David Hynek
  • Marketa Vaculovicova
  • Vojtech Adam
  • Rene KizekEmail author
Original Paper

Abstract

Many active antiviral substances come from natural sources. In this way, peptides, isolated from Asian toad Bombina maxima, called maximins, are very promising. Most of them have good antimicrobial activity; however, derivatives of anionic 20 amino acids-long maximin H5 show also promising antiviral activity. The effect can be enhanced by binding to suitable nanocarriers such as fullerenes. In the present study, six mutants of maximin H5 were designed where aspartic acid at position 11 was replaced by asparagine, histidine, tyrosine, alanine, glycine, or valine. The binding yield of each peptide to fullerene C60 nanocrystals was studied by derivatization with fluorescent reagent fluorescamine. The antiviral activity of these peptides and peptides bound to fullerene C60 nanocrystals was studied using bacteriophage λ as a model virus. All of the designed peptides had higher antiviral activity compared to maximin H5. The highest antiviral activity was observed in case of maximin variants H5N, H5V, or H5Y. Moreover, the antiviral activity was dependent on the amount of peptide bound on the surface of fullerene C60 nanocrystals, which was enhanced by trimesic acid (benzene-1,3,5-tricarboxylic acid) treated fullerene C60 nanocrystals.

Graphical abstract

Keywords

Carbon nanomaterials Maximin H5 Nanocarrier Nanomedicine Viral infections 

Notes

Acknowledgments

The financial support from IGA FULEREN_MAXIMIN IP_31_2015 is highly acknowledged. The authors wish to express their thanks to Adela Jarosova, Radek Chmela, Michaela Docekalova and Dita Munzova for perfect technical assistance; to Lukas Richtera for data consultation and Ljubica Svobodova from Masaryk University for providing E. coli strains.

Supplementary material

706_2016_1675_MOESM1_ESM.pdf (216 kb)
Supplementary material 1 (PDF 215 kb)

References

  1. 1.
    Park K (2013) ACS Nano 7:7442CrossRefGoogle Scholar
  2. 2.
    Leonard B (2009) Cancer nanotechnology: going small for big advances: using nanotechnology to advance cancer diagnosis, prevention and treatment. DIANE, PhiladelphiaGoogle Scholar
  3. 3.
    Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S, Langer RS, Farokhzad OC (2007) Nano Today 2:14CrossRefGoogle Scholar
  4. 4.
    Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Pharmacol Res 62:144CrossRefGoogle Scholar
  5. 5.
    Peer D, Karp JM, Hong S, FaroKhzad OC, Margalit R, Langer R (2007) Nat Nanotechnol 2:751CrossRefGoogle Scholar
  6. 6.
    Dunk PW, Kaiser NK, Hendrickson CL, Quinn JP, Ewels CP, Nakanishi Y, Sasaki Y, Shinohara H, Marshall AG, Kroto HW (2012) Nat Commun 3:1CrossRefGoogle Scholar
  7. 7.
    Yamamoto S, Ohkita H, Benten H, Ito S (2012) Adv Funct Mater 22:3075CrossRefGoogle Scholar
  8. 8.
    Heister E, Neves V, Tilmaciu C, Lipert K, Beltran VS, Coley HM, Silva SRP, McFadden J (2009) Carbon 47:2152CrossRefGoogle Scholar
  9. 9.
    Blazkova I, Nguyen HV, Kominkova M, Konecna R, Chudobova D, Krejcova L, Kopel P, Hynek D, Zitka O, Beklova M, Adam V, Kizek R (2014) Electrophoresis 35:1040CrossRefGoogle Scholar
  10. 10.
    Heger Z, Kominkova M, Cernei N, Krejcova L, Kopel P, Zitka O, Adam V, Kizek R (2014) Electrophoresis 35:3290CrossRefGoogle Scholar
  11. 11.
    Shetti NP, Malode SJ, Nandibewoor ST (2012) Bioelectrochemistry 88:76CrossRefGoogle Scholar
  12. 12.
    Tollas S, Bereczki I, Sipos A, Roth E, Batta G, Daroczi L, Keki S, Ostorhazi E, Rozgonyi F, Herczegh P (2012) Eur J Med Chem 54:943CrossRefGoogle Scholar
  13. 13.
    Anonymous (2014) Nat Rev Drug Discov 13:644. doi: 10.1038/nrd4424 Google Scholar
  14. 14.
    Mojola SA (2014) Signs 39:341CrossRefGoogle Scholar
  15. 15.
    Krejcova L, Hynek D, Kopel P, Rodrigo MAM, Adam V, Hubalek J, Babula P, Trnkova L, Kizek R (2013) Viruses-Basel 5:1719CrossRefGoogle Scholar
  16. 16.
    Turner C (2014) Nursing 44:68CrossRefGoogle Scholar
  17. 17.
    Epand RM, Vogel HJ (1999) Biochim Biophys Acta Biomembr 1462:11CrossRefGoogle Scholar
  18. 18.
    Boman HG (2000) Immunol Rev 173:5CrossRefGoogle Scholar
  19. 19.
    Clarke BT (1997) Biol Rev Camb Philos Soc 72:365CrossRefGoogle Scholar
  20. 20.
    Liu R, Liu HA, Ma YF, Wu J, Yang HL, Ye HH, Lai R (2011) J Proteome Res 10:1806CrossRefGoogle Scholar
  21. 21.
    Matsuzaki K (2001) Biochem Soc Trans 29:598CrossRefGoogle Scholar
  22. 22.
    Lee WH, Zhang H, Zhang YX, Jin Y, Lai R, Zhang Y (2005) FEBS Lett 579:4443CrossRefGoogle Scholar
  23. 23.
    Ortega G, Rhee DS, Papandria DJ, Yang J, Ibrahim AM, Shore AD, Makary MA, Abdullah F (2012) J Surg Res 174:33CrossRefGoogle Scholar
  24. 24.
    Lai R, Liu H, Lee WH, Zhang Y (2002) Biochem Biophys Res Commun 295:796CrossRefGoogle Scholar
  25. 25.
    Wang GS, Watson KM, Peterkofsky A, Buckheit RW (2010) Antimicrob Agents Chemother 54:1343CrossRefGoogle Scholar
  26. 26.
    Yang J, Li MM, Shen XT, Liu SW (2013) Viruses-Basel 5:352CrossRefGoogle Scholar
  27. 27.
    Lai R, Zheng YT, Shen JH, Liu GJ, Liu H, Lee WH, Tang SZ, Zhang Y (2002) Peptides 23:427CrossRefGoogle Scholar
  28. 28.
    Solaro R, Chiellini F, Battisti A (2010) Materials 3:1928CrossRefGoogle Scholar
  29. 29.
    Lee WH, Li Y, Lai R, Li S, Zhang Y, Wang W (2005) Eur J Immunol 35:1220CrossRefGoogle Scholar
  30. 30.
    Kominkova M, Michalek P, Guran R, Cernei N, Ruttkay-Nedecky B, Anyz J, Zitka O, Stepankova O, Pikula J, Adam V, Beklova M, Kizek R (2014) Chromatographia 77:609CrossRefGoogle Scholar
  31. 31.
    Rastogi V, Yadav P, Bhattacharya SS, Mishra AK, Verma N, Verma A, Pandit JK (2014) J Drug Deliv 2014:670815–670838CrossRefGoogle Scholar
  32. 32.
    Wang J, Hu ZB, Xu JX, Zhao YL (2014) NPG Asia Mater 6:1Google Scholar
  33. 33.
    Yang XL, Ebrahimi A, Li J, Cui QJ (2014) Int J Nanomed 9:77CrossRefGoogle Scholar
  34. 34.
    Palanisamy S, Thirumalraj B, Chen S-M, Ali MA, Al-Hemaid FMA (2015) J Colloid Interface Sci 448:251CrossRefGoogle Scholar
  35. 35.
    Zhou DB, Wang GW (2015) Org Lett 17:1260CrossRefGoogle Scholar
  36. 36.
    Lens M, Medenica L, Citernesi U (2008) Biotechnol Appl Biochem 51:135CrossRefGoogle Scholar
  37. 37.
    Murray RW, Iyanar K (1997) Tetrahedron Lett 38:335CrossRefGoogle Scholar
  38. 38.
    Chen BX, Wilson SR, Das M, Coughlin DJ, Erlanger BF (1998) Proc Natl Acad Sci USA 95:10809CrossRefGoogle Scholar
  39. 39.
    Sawamura M, Kawai K, Matsuo Y, Kanie K, Kato T, Nakamura E (2002) Nature 419:702CrossRefGoogle Scholar
  40. 40.
    Cheng DP, Khan MA, Houser RP (2001) Inorg Chem 40:6858CrossRefGoogle Scholar
  41. 41.
    Liang SW, Li MX, Shao M, Liu HJ (2007) Inorg Chem Commun 10:1347CrossRefGoogle Scholar
  42. 42.
    Mrozinski J, Bienko A, Kopel P, Langer V (2008) Inorg Chim Acta 361:3723CrossRefGoogle Scholar
  43. 43.
    Dostalova S, Milosavljevic V, Guran R, Kominkova M, Cihalova K, Cernei N, Kopel P, Vaculovicova M, Adam V, Kizek R (2015) Antiviral activity of fullerenes modified with maximin H5 derivatives. Paper presented at the MendelNet 2015, Mendel University in Brno, Czech Republic, pp 579–584Google Scholar
  44. 44.
    Xie LG, Luo Y, Lin DD, Xi WH, Yang XJ, Wei GH (2014) Nanoscale 6:9752CrossRefGoogle Scholar
  45. 45.
    Jung JE, Yoon SS (2002) Bull Korean Chem Soc 23:1483CrossRefGoogle Scholar
  46. 46.
    Abe S, Hyono A, Nakayama K, Takada T, Yonezawa T (2013) Jpn J Appl Phys 52:1Google Scholar
  47. 47.
    Chudobova D, Dostalova S, Ruttkay-Nedecky B, Guran R, Rodrigo MAM, Tmejova K, Krizkova S, Zitka O, Adam V, Kizek R (2015) Microbiol Res 170:147CrossRefGoogle Scholar
  48. 48.
    Vizioli J, Salzet M (2002) Trends Pharmacol Sci 23:494CrossRefGoogle Scholar
  49. 49.
    Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Appl Environ Microbiol 73:3283CrossRefGoogle Scholar
  50. 50.
    Dostalova S, Munzova D, Vaculovicova M, Kizek R (2014) J Metallomics Nanotech 1:34Google Scholar
  51. 51.
    Murray NE, Gann A (2007) Curr Biol 17:R305CrossRefGoogle Scholar
  52. 52.
    Herskowi I (1973) Annu Rev Genet 7:289CrossRefGoogle Scholar
  53. 53.
    Weber K, Osborn M (1969) J Biol Chem 244:4406Google Scholar
  54. 54.
    Signer ER, Weil J (1968) Cold Spring Harbor Symp Quant Biol 33:715CrossRefGoogle Scholar
  55. 55.
    Fraser MJ, Ainley K, Parish JH (1982) Mut Res 88:76Google Scholar
  56. 56.
    Clark EM, Wright H, Lennon KA, Craik VA, Clark JR, March JB (2012) Appl Environ Microbiol 78:3033CrossRefGoogle Scholar
  57. 57.
    Levinson W, Helling R (1976) Antimicrob Agents Chemother 9:160CrossRefGoogle Scholar
  58. 58.
    Bayer ME, Bocharov AF (1973) Virology 54:465CrossRefGoogle Scholar
  59. 59.
    Dokland T, Murialdo H (1993) J Mol Biol 233:682CrossRefGoogle Scholar
  60. 60.
    Heger Z, Michalek P, Guran R, Cernei N, Duskova K, Vesely S, Anyz J, Stepankova O, Zitka O, Adam V, Kizek R (2015) Oncol Rep 34:3247Google Scholar
  61. 61.
    Nguyen HV, Heger Z, Kominkova M, Michalek P, Gumulec J, Guran R, Pridal A, Fernandez C, Hynek D, Adam V, Kizek R (2015) Int J Electrochem Sci 10:1249Google Scholar
  62. 62.
    Kocdan D, Basan H (2013) Luminescence 28:961CrossRefGoogle Scholar
  63. 63.
    Cernei N, Dostalova S, Heger Z, Kopel P, Zitka O, Adam V, Kizek R (2015) J Metallomics Nanotech 1:57Google Scholar
  64. 64.
    Krizkova S, Adam V, Eckschlager T, Kizek R (2009) Electrophoresis 30:3726CrossRefGoogle Scholar
  65. 65.
    Dostalova S, Vaculovicova M, Kizek R (2014) J Metallomics Nanotech 1:64Google Scholar
  66. 66.
    Smerkova K, Dostalova S, Skutkova H, Ryvolova M, Adam V, Provaznik I, Kizek R (2013) Chromatographia 76:329CrossRefGoogle Scholar
  67. 67.
    Smerkova K, Dostalova S, Vaculovicova M, Kynicky J, Trnkova L, Kralik M, Adam V, Hubalek J, Provaznik I, Kizek R (2013) J Pharm Biomed Anal 86:65CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Simona Dostalova
    • 1
    • 2
  • Amitava Moulick
    • 1
    • 2
  • Vedran Milosavljevic
    • 1
    • 2
  • Roman Guran
    • 1
    • 2
  • Marketa Kominkova
    • 1
    • 2
  • Kristyna Cihalova
    • 1
    • 2
  • Zbynek Heger
    • 1
    • 2
  • Lucie Blazkova
    • 1
    • 2
  • Pavel Kopel
    • 1
    • 2
  • David Hynek
    • 1
    • 2
  • Marketa Vaculovicova
    • 1
    • 2
  • Vojtech Adam
    • 1
    • 2
  • Rene Kizek
    • 1
    • 2
    Email author
  1. 1.Laboratory of Metallomics and Nanotechnologies, Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
  2. 2.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations