Monatshefte für Chemie - Chemical Monthly

, Volume 146, Issue 10, pp 1763–1770 | Cite as

Identification and quantification of the fatty acids and isolation of (+)-pinitol, liriodenine, and (−)-N-acetyl-anonaine from empty capsules of Michelia champaca fruits. Crystal structure of (−)-N-acetylanonaine

  • Jacqueline A. TakahashiEmail author
  • Mônica B. Floreano
  • Mariana S. Oliveira
  • Thais S. Oliveira
  • Jioji N. Tabudravu
  • James L. Wardell
  • Solange M. S. V. Wardell
Original Paper


The identity of fatty acids, as their methyl esters, present in the empty seed pods of Michelia champaca is reported as well as the characterisation of three compounds, namely (+)-pinitol, liriodenine, and (−)-N-acetylanonaine. The identification of these compounds was generally obtained by spectroscopic methods, and additionally by X-ray crystallography for N-acetylanonaine. The antimicrobial activity of the isolated compounds against the Gram-positive test strains Bacillus cereus ATCC 11778, Listeria monocitogenes ATCC 15313, and Staphylococcus aureus ATCC 29213 is described. In general (−)-N-acetylanonaine was the most active compound. However, the selectivity of liriodenine towards S. aureus suggests that further study would be worthwhile. (−)-N-Acetylanonaine crystallizes in the orthorhombic space group P212121 with a = 6.0773(2) Å, b = 11.6053(5) Å, c = 20.9906(9) (11) Å, and Z = 4.

Graphical abstract


(+) Pinitol Liriodenine (−)-N-Acetylanonaine Michelia champaca X-ray crystallography 



The use of the NCS crystallographic service at Southampton and the valuable assistance of the staff there are gratefully acknowledged. JAT thanks FAPEMIG and CNPq for support: JLW thanks FAPERJ and CNPq, Brazil for support.


  1. 1.
    Perry LM (1980) Medicinal plants of East and Southeast Asia: attributed properties and uses. The MIT Press, Cambridge, Massachusetts, p 154Google Scholar
  2. 2.
    Vimala R, Nagarajan S, Alam M, Susan T, Joy S (1997) Indian J Exp Biol 35:1310Google Scholar
  3. 3.
    Elizabeth KM, Lakshmi YAS (2005) Asian J Chem 18:196Google Scholar
  4. 4.
    Ananthi T, Chitra M, Aruna B (2014) Int J Pharm Biosci 5:351Google Scholar
  5. 5.
    Wei LS, Wee W, Siong JYF, Syamsumir DF (2011) Stanford J Pharm Sci 4:19Google Scholar
  6. 6.
    Khan MR, Kihara M, Omoloso AD (2002) Fitoterapia 73:744CrossRefGoogle Scholar
  7. 7.
    Takahashi M, Fuchino H, Satake M, Agatsuma Y, Sekita S (2004) Biol Pharm Bull 27:921CrossRefGoogle Scholar
  8. 8.
    Hoffmann JJ, Torrance SJ, Wiedhopf RM, Cole JR (1977) J Pharm Sci 66:883CrossRefGoogle Scholar
  9. 9.
    Bedi KL, Atal CK (1970) J Ind J Chem 8:325Google Scholar
  10. 10.
    Mandal B, Maity CR (1992) Acta Aliment 21:131Google Scholar
  11. 11.
    Banerjee SK, Chakravarti RN, Fales HM (1964) Bull Calcutta Sch Trop Med 12:23Google Scholar
  12. 12.
    Majumder PL, Chatterjee A (1963) J Ind Chem Soc 40:929Google Scholar
  13. 13.
    Monteiro MCM, Leptokarydis IH, Silva GH, da Silva VC, Bolzani VS, Young MCM, Lopes MN (2007) Ecletica Quim 32:13CrossRefGoogle Scholar
  14. 14.
    Huang CT, Chen SJ, Wu HM, Kang YF, Chen HL, Li WJ, Li HT, Chen CY (2014) Chem Nat Comp 50:1047Google Scholar
  15. 15.
    Yeh YT, Huang JC, Kuo PL, Chen CY (2011) Nat Prod Commun 6:1251Google Scholar
  16. 16.
    Kapoor S, Jaggi RK (2004) Ind J Pharm Sci 66:403Google Scholar
  17. 17.
    Sharma S, Mehta BK (1998) Ind J Chem 37B:1219Google Scholar
  18. 18.
    Balurgi VC, Rojatkar SR, Pujar PP, Patwardhan BK, Nagasampagi BA (1997) Ind Drugs 34:415Google Scholar
  19. 19.
    Jacobsson U, Kumar V, Saminathan S (1995) Phytochemistry 39:839CrossRefGoogle Scholar
  20. 20.
    Sethi VK, Thappa RK, Dhar KL, Atal CK (1984) Planta Med 50:364CrossRefGoogle Scholar
  21. 21.
    Hosamani KM, Hiremath VB, Keri RS (2009) Biomass Energy 33:267CrossRefGoogle Scholar
  22. 22.
    Baccouri B, Zarrouk W, Krichene D, Nouairi I, Ben Youssef N, Daoud D, Zarrouk M (2007) J Agron 6:388CrossRefGoogle Scholar
  23. 23.
    Jahurul MHA, Zaidul ISM, Norulaini NAN, Sahena F, Jinap S, Azmir J, Sharif KM, Omar AKM (2013) J Food Eng 117:467CrossRefGoogle Scholar
  24. 24.
    Segall SD, Artz WE, Raslan DS, Ferraz VP, Takahashi JA (2006) J Sci Food Agric 86:445CrossRefGoogle Scholar
  25. 25.
    Hudlicky T, Rulin F, Tsunoda T, Luna H, Andersen C, Price JD (1991) Israel J Chem 31:229CrossRefGoogle Scholar
  26. 26.
    Kim MJ, Yoo KH, Kim JH, Seo YT, Ha BW, Kho JH, Shin YG, Chung CH (2007) Diabetes Res Clin Pract 77:S247CrossRefGoogle Scholar
  27. 27.
    Sethi G, Ahn KS, Sung B, Aggarwal BB (2008) Mol Cancer Ther 7:1604CrossRefGoogle Scholar
  28. 28.
    Azimova SS, Yunusov MS (eds) (2013) Natural compounds–alkaloids. Springer, New York, p 355Google Scholar
  29. 29.
    Chen ZF, Liu YC, Peng Y, Hong X, Wang HH, Zhang MM, Liang H (2012) Synth J Biol Inorg Chem 17:247CrossRefGoogle Scholar
  30. 30.
    Goh SH, Jantaan I (1992) Phytochemistry 31:2495 (and refs therein) CrossRefGoogle Scholar
  31. 31.
    Guinaudeau H, Leboeuf M, Cave A (1983) J Nat Prod 46:761CrossRefGoogle Scholar
  32. 32.
    Zhang Z, ElSohly HN, Jacob MR, Pasco DS, Walker LA, Clark AM (2002) J Nat Prod 65:856CrossRefGoogle Scholar
  33. 33.
    Ruangrungsi N, Rivepiboon A, Lange GL, Lee M, Decicco CP, Picha P, Preechanukool K (1987) J Nat Prod 50:891CrossRefGoogle Scholar
  34. 34.
    Chen CY, Wu HM, Chao WY, Lee CH (2013) Afr J Pharm Pharmacol 7:1067 and refs therein CrossRefGoogle Scholar
  35. 35.
    Nonatom MG, Garson AJ, Truscott RJW, Carver JA (1990) J Nat Prod 53:1623CrossRefGoogle Scholar
  36. 36.
    Rao KV, Davies R (1986) J Nat Prod 49:340CrossRefGoogle Scholar
  37. 37.
    Jantan I, Raweh SM, Yasin YHM, Murad S (2006) Phytotherapy Res 20:493CrossRefGoogle Scholar
  38. 38.
    Barnhill AE, Brewer MT, Carlson SA (2012) Antimicrob Agents Chemother 56:4046CrossRefGoogle Scholar
  39. 39.
    Lee N, Sun JM, Kwon KY, Kim HJ, Koo M, Chun HS (2012) J Food Protect 75:225CrossRefGoogle Scholar
  40. 40.
    Hooft RWW (1998) COLLECT, Data collection software. Nonius BV, DelftGoogle Scholar
  41. 41.
    Otwinowski Z, Minor W Jr (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Carter CW, Sweet RM (eds) Methods in Enzymology. Academic Press, New York, p 307 (vol. 276, Macromolecular crystallography, Part A) Google Scholar
  42. 42.
    Sheldrick GM (2007) SADABS Version 2007/2. Bruker AXS Inc, MadisonGoogle Scholar
  43. 43.
    Mercury 3.3 (2013) Cambridge Crystallographic Data Centre, UKGoogle Scholar
  44. 44.
    Sheldrick GM (2008) Acta Crystallogr A 64:112CrossRefGoogle Scholar
  45. 45.
    Spek AJ (2003) J Appl Crystallogr 36:7CrossRefGoogle Scholar
  46. 46.
    Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Am J Clin Pathol 45:493Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Jacqueline A. Takahashi
    • 1
    Email author
  • Mônica B. Floreano
    • 1
  • Mariana S. Oliveira
    • 1
  • Thais S. Oliveira
    • 1
  • Jioji N. Tabudravu
    • 2
  • James L. Wardell
    • 2
    • 3
  • Solange M. S. V. Wardell
    • 4
  1. 1.Departamento de Química, ICExUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of ChemistryUniversity of AberdeenOld AberdeenScotland, UK
  3. 3.FioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far-ManguinhosRua Sizenando NabucoRio De JaneiroBrazil
  4. 4.CHEMSOLAberdeenScotland, UK

Personalised recommendations