Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 146, Issue 7, pp 1081–1097 | Cite as

Olefin metathesis meets rubber chemistry and technology

  • Simon Leimgruber
  • Gregor TrimmelEmail author
Review

Abstract

This article summarizes possible applications of olefin metathesis in rubber chemistry and technology. There are three main research directives with valuable contributions to the synthesis, recycling, and characterization of elastomers. First, ring opening metathesis polymerization as well as acyclic diene metathesis polycondensation yields polyalkenamers with cross-linkable double bonds, and thus can be used for the synthesis of defined rubbers serving as raw materials in rubber technology. Secondly, by cross metathesis reaction, natural rubber (and synthetic rubber) can be functionalized resulting in telechelic polymers or small molecule specialty chemicals. Thirdly, olefin metathesis offers the possibility of degrading the cross-linked rubber network into smaller soluble pieces, enabling different analytical possibilities such as characterization of cross-linking sites, determination of rubber, rubber additives and carbon black, and exploration of the rubber–metal adhesive interface. Additionally, this route can also be used for recycling of rubber products.

Graphical abstract

Keywords

Material science Olefin metathesis Elastomers Polymerization Analytical methods Alkenes 

Notes

Acknowledgments

A part of this work was performed at the Polymer Competence Center Leoben GmbH (PCCL, Austria) within the framework of the COMET-program of the Federal Ministry for Transport, Innovation and Technology and Federal Ministry for Economy, Family and Youth with contributions by Graz University of Technology and Semperit Technical Products GmbH. The PCCL is funded by the Austrian Government and the State Governments of Styria, Lower Austria and Upper Austria.

References

  1. 1.
    Grela K (2014) Olefin Metathesis: Theory and Practice. Wiley, New JerseyCrossRefGoogle Scholar
  2. 2.
    Grubbs RH, Wenzel AG, O’Leary DJ, Khosravi E (2015) Handbook of Metathesis, 2nd edn. John Wiley & Sons, New JerseyGoogle Scholar
  3. 3.
    Leitgeb A, Wappel J, Slugovc C (2010) Polymer 51:2927CrossRefGoogle Scholar
  4. 4.
    Banks RL, Bailey GC (1964) Ind Eng Chem Prod Res Dev 3:170CrossRefGoogle Scholar
  5. 5.
    Mol JC (2004) J Mol Catal A: Chem 213:39CrossRefGoogle Scholar
  6. 6.
    Schuster M, Blechert B (1997) Angew Chem Int Ed 36:2036CrossRefGoogle Scholar
  7. 7.
    Bose S, Ghosh S (2014) Proc Indian Nat Sci Acad 80:37CrossRefGoogle Scholar
  8. 8.
    Goodyear C (1844) Improvement in India-Rubber Fabrics. US Patent 3633 A, Jun 15, 1844Google Scholar
  9. 9.
    Natta G, Dall’Asta G, Bassi IW, Carella G (1966) Makromol Chem 91:87Google Scholar
  10. 10.
    Schrock RR (1990) Acc Chem Res 23:158CrossRefGoogle Scholar
  11. 11.
    Vougioukalakis GC, Grubbs RH (2010) Chem Rev 110:1746CrossRefGoogle Scholar
  12. 12.
    Kress S, Blechert S (2012) Chem Soc Rev 41:4389CrossRefGoogle Scholar
  13. 13.
    Schrock RR, Hoveyda AH (2003) Angew Chem Int Ed 42:4592CrossRefGoogle Scholar
  14. 14.
    Deraedt C, d’Halluin M, Astruc D (2013) Eur J Inorg Chem 4881Google Scholar
  15. 15.
    Dall’Asta G (1974) Rubber Chem Technol 47:511Google Scholar
  16. 16.
    Dounis P, Feast WJ, Kenwright AM (1995) Polymer 36:2787CrossRefGoogle Scholar
  17. 17.
    Katz TJ, Lee SJ, Acton N (1976) Tetrahedron Lett 47:4247CrossRefGoogle Scholar
  18. 18.
    Schleyer PvR, Williams JE, Blanchard KR (1970) J Am Chem Soc 92:2377Google Scholar
  19. 19.
    Allinger NL, Sprague JT (1972) J Am Chem Soc 94:5734CrossRefGoogle Scholar
  20. 20.
    Hérisson PJ-L, Chauvin Y (1970) Makromol Chem 141:161Google Scholar
  21. 21.
    Dimonie M, Coca S, Teodorescu M, Popescu L, Chipara M, Dragutan V (1994) J Mol Catal 90:117CrossRefGoogle Scholar
  22. 22.
    Keitz BK, Fedorov A, Grubbs RH (2012) J Am Chem Soc 134:2040CrossRefGoogle Scholar
  23. 23.
    Bielawski CW, Grubbs RH (2007) Prog Polym Sci 32:1CrossRefGoogle Scholar
  24. 24.
    Streck R (1989) ChemTech 19:498Google Scholar
  25. 25.
    Warel S (1987) Erdöl Erdgas Kohle 103:238Google Scholar
  26. 26.
    Evonik Industries, Vestenamer 8012: The rubber additive with unique properties, http://www.struktol.com/pdfs/Vestenamer%208012-Evonik.pdf (05.05.2015)
  27. 27.
    Meisenheimer H, Steiger R, Marbach A, Diedrich KM, Dunn J, Karall G (2011) Encyclopedia of industrial chemistry (Rubber, 6. Synthesis by Radical and Other Mechanisms). Wiley-VCH Verlag, WeinheimGoogle Scholar
  28. 28.
    Slugovc C (2014) Industrial Applications of olefin metathesis. In Grela K (ed), Olefin Metathesis: Theory and Practice. John Wiley & Sons, New Jersey, p 329Google Scholar
  29. 29.
    Dräxler A (1981) Kaut Gummi Kunst 34:185Google Scholar
  30. 30.
    Calderon N, Ofstead EA, Judy WA (1967) J Polym Sci, Part A: Polym Chem 5:2209CrossRefGoogle Scholar
  31. 31.
    Katz TJ, Han CC (1982) Organometallics 1:1093CrossRefGoogle Scholar
  32. 32.
    Preishuber-Pflugl P, Buchacher P, Eder E, Schitter RM, Stelzer F (1998) J Mol Catal A: Chem 133:151CrossRefGoogle Scholar
  33. 33.
    Shea KJ, Kim JS (1992) J Am Chem Soc 114:3044CrossRefGoogle Scholar
  34. 34.
    Walker R, Conrad RM, Grubbs RH (2009) Macromolecules 42:599CrossRefGoogle Scholar
  35. 35.
    Delaude L, Szypa M, Demonceau A, Noels AF (2002) Adv Synth Catal 6:344Google Scholar
  36. 36.
    Martinez H, Ren N, Matta ME, Hillmyer MA (2014) Polym Chem 5:3507CrossRefGoogle Scholar
  37. 37.
    Scheider WA, Mueller MF (1988) Makromol Chem 189:2823CrossRefGoogle Scholar
  38. 38.
    Anderson AW, Merckling NG (1955) Polymeric Bicyclo-[2.2.1]-2-heptene. US Patent 2,721,189, Oct 18, 1955; (1956) Chem Abstr 50:14596Google Scholar
  39. 39.
    Ohm RF, Vial TM (1987) J Elastom Plast 10:15Google Scholar
  40. 40.
    Banasiak DS, Mozdzen EC, Byers JD (1987) Metallotetradecadiene compounds. US Patent 4,687,867 A, Aug 18, 1987; (1987) Chem Abstr 106:32344Google Scholar
  41. 41.
    Kress J, Wesolek M, Osborn JA (1982) J Chem Soc Chem Commun 514Google Scholar
  42. 42.
    Kress J, Osborn JA, Greene RME, Ivin KJ, Rooney JJ (1987) J Am Chem Soc 109:899CrossRefGoogle Scholar
  43. 43.
    Schrock RR, Feldman J, Cannizzo LF, Grubbs RH (1987) Macromolecules 20:1172CrossRefGoogle Scholar
  44. 44.
    Floros G, Saragas N, Paraskevopoulou, Psaroudakis N, Koinis S, Pitsikalis M, Hadjichristidis N, Mertis K (2012) Polymers 4:1657Google Scholar
  45. 45.
    Murdzek JS, Schrock RR (1987) Organometallics 6:1373CrossRefGoogle Scholar
  46. 46.
    Bazan GC, Schrock RR, Cho HN, Gibson VC (1991) Macromolecules 24:4495CrossRefGoogle Scholar
  47. 47.
    Heroguez V, Fontanille M (1994) J Polym Sci (Part A) 32:1755CrossRefGoogle Scholar
  48. 48.
    Hatjopoulos JD, Register RA (2005) Macromolecules 38:10320CrossRefGoogle Scholar
  49. 49.
    Schwab B, France MB, Ziller JW, Grubbs RH (1995) Angew Chem Int Ed 34:2039CrossRefGoogle Scholar
  50. 50.
    Hafner A, van der Schaaf PA, Mühlebach A (1996) Chimia 50:131Google Scholar
  51. 51.
    Truett WL, Johnson DR, Bobinson IM, Montague BA (1960) J Am Chem Soc 82:2337CrossRefGoogle Scholar
  52. 52.
    Gilliom LR, Grubbs RH (1986) J Am Chem Soc 108:733CrossRefGoogle Scholar
  53. 53.
    Wallace KC, Liu AH, Dewan JC, Schrock RR (1988) J Am Chem Soc 110:4964CrossRefGoogle Scholar
  54. 54.
    Brumaghim JL, Girolami GS (1999) Organometallics 18:1923CrossRefGoogle Scholar
  55. 55.
    Dall’Asta G, Mazzanti G, Natta G, Porri L (1962) Makromol Chem Rapid Comm 56:224Google Scholar
  56. 56.
    Natta G, Dall´Asta G, Porri L (1965) Makromol Chem 81:253Google Scholar
  57. 57.
    Wu Z, Wheeler DR, Grubbs RH (1992) J Am Chem Soc 114:146CrossRefGoogle Scholar
  58. 58.
    Flook MM, Jiang AJ, Schrock RR, Müller P, Hoveyda AH (2009) J Am Chem Soc 131:7962CrossRefGoogle Scholar
  59. 59.
    Wu Z, Grubbs RH (1994) J Mol Catal 90:39CrossRefGoogle Scholar
  60. 60.
    Natta G, Dall´Asta G, Mazzanti G (1964) Angew Chem Int Ed 3:723Google Scholar
  61. 61.
    Günther P, Haas F, Marwede G, Nützel K, Oberkirch W, Pampus G, Schön N, Witte J (1970) Angew Makromol Chem 14:87CrossRefGoogle Scholar
  62. 62.
    Dall’Asta, Scaglione P (1964) Rubber Chem Technol 18:1235Google Scholar
  63. 63.
    Trzaska ST, Lee L-BW, Register RA (2000) Macromolecules 33:9215Google Scholar
  64. 64.
    Haas F, Nützel K, Pampus G, Theisen D (1970) Rubber Chem Technol 43:1116CrossRefGoogle Scholar
  65. 65.
    Hejl A, Schermann OA, Grubbs RH (2005) Macromolecules 38:7214CrossRefGoogle Scholar
  66. 66.
    Vasile C (2000) Handbook of Polyolefins, 2nd edn. Marcel Dekker, New York, p 131CrossRefGoogle Scholar
  67. 67.
    Baughman TW, Wagener KB (2005) Adv Polym Sci 176:1CrossRefGoogle Scholar
  68. 68.
    Bachler PR, Wagener KB (2015) Monatsh Chem. doi: 10.1007/s00706-015-1479-7 Google Scholar
  69. 69.
    Wagener KB, Boncella JM, Nel JG (1991) Macromolecules 24:2649CrossRefGoogle Scholar
  70. 70.
    Wagener KB, Nel JG, Duttweiler RP, Hillmyer MA, Boncella JM, Konzelman J, Smith DW, Puts R, Willoughby L (1990) Rubber Chem Technol 64:83CrossRefGoogle Scholar
  71. 71.
    Zuech EA, Hughes WB, Kubicek DH, Kittleman ET (1970) J Am Chem Soc 92:528CrossRefGoogle Scholar
  72. 72.
    Dall’Asta G, Stigliani G, Greco A, Motta L (1973) Chim Ind 55:142Google Scholar
  73. 73.
    Brosse JC, Campistron I, Derouet D, el Hamdaoui A, Houdayer S, Reyx D, Ritoit-Gillier S (2000) J Appl Polym Sci 78:1461CrossRefGoogle Scholar
  74. 74.
    Maughon BR, Grubbs RH (1997) Macromolecules 30:3459CrossRefGoogle Scholar
  75. 75.
    Perrott MG, Novak BM (1996) Macromolecules 29:1817CrossRefGoogle Scholar
  76. 76.
    Schneider MF, Gantner C, Obrecht W, Nuyken O (2010) Macromol Rapid Commun 31:1731CrossRefGoogle Scholar
  77. 77.
    Smit T, Müller K, Dahmen S, Negrete L, Sturm B (2012) Rubber material with barrier material made of cycloolefin copolymers. WO 2014026865 A1, Feb 20, 2014; (2014) Chem Abstr 160:311898Google Scholar
  78. 78.
    Buchmeiser MR, Ahmad I, Gurram V, Kumar PS (2011) Macromolecules 44:4098CrossRefGoogle Scholar
  79. 79.
    Bornand M, Chen P (2005) Angew Chem Int Ed 44:7909CrossRefGoogle Scholar
  80. 80.
    Torker S, Müller A, Sigrist R, Chen P (2010) Organometallics 29:2735CrossRefGoogle Scholar
  81. 81.
    Lichtenheldt M, Wang D, Vehlow K, Reinhardt I, Kühnel C, Decker U, Blechert S, Buchmeiser MR (2009) Chem Eur J 15:9451CrossRefGoogle Scholar
  82. 82.
    Cetinkaya S, Karabulut S, Imamoglu Y (2007) NATO Sci Ser 243:355Google Scholar
  83. 83.
    Cetinkaya S, Karabulut S, Imamoglu Y (2005) Eur Polym J 41:467CrossRefGoogle Scholar
  84. 84.
    Karabulut A, Cetinkaya S, Imamoğlu Y (2005) Appl Organometal Chem 19:997CrossRefGoogle Scholar
  85. 85.
    Hino T, Inoue N, Endo T (2005) J Polym Sci A Polym Chem 43:6599CrossRefGoogle Scholar
  86. 86.
    Gringolts ML, Denisova YI, Shandryuk GA, Krentsel LB, Litmanovich AD, Finkelshtein ES, Kudryavtsev YV (2015) RSC Adv 5:316CrossRefGoogle Scholar
  87. 87.
    Otsuka H, Muta T, Sakada M, Maeda T, Takahara A (2009) Chem Commun 1073Google Scholar
  88. 88.
    Ast W, Rheinwald G, Kerber R (1976) Makromol Chem 177:1341CrossRefGoogle Scholar
  89. 89.
    Tian Q, Larock RC (2002) J Am Oil Chem Soc 79:479CrossRefGoogle Scholar
  90. 90.
    Spurcaciu B, Buzdugan E, Nicolae C-A, Dragutan I, Dragutan V (2007) NATO Sci Ser 243:347Google Scholar
  91. 91.
    Jeong W, Mauldin TC, Larock RC, Kessler MR (2009) Macromol Mat Eng 294:756CrossRefGoogle Scholar
  92. 92.
    Caster KC, Walls RD (2002) Adv Synth Catal 344:764CrossRefGoogle Scholar
  93. 93.
    Hillmyer MA, Grubbs RH (1993) Macromolecules 25:872CrossRefGoogle Scholar
  94. 94.
    Thomas RM, Grubbs RH (2010) Macromolecules 43:3705CrossRefGoogle Scholar
  95. 95.
    Ji S, Hoye TR, Macosko CW (2004) Macromolecules 37:5485CrossRefGoogle Scholar
  96. 96.
    Pitet LM, Hillmyer MA (2011) Macromolecules 44:2378CrossRefGoogle Scholar
  97. 97.
    Annunziata L, Fouquay S, Michaud G, Simon F, Guillaume SM Carpentier J-F (2013) Polym Chem 4:1313Google Scholar
  98. 98.
    Mathers RT, McMahon KC, Damodaran K, Retarides CJ, Kelley DJ (2006) Macromolecules 39:8982CrossRefGoogle Scholar
  99. 99.
    Brzezinska KR, Wagener KB, Burns GT (1999) J Polym Sci A Polym Chem 37:849CrossRefGoogle Scholar
  100. 100.
    Nubel PO, Lutman CA, Yokelson HB (1994) Macromolecules 27:7000CrossRefGoogle Scholar
  101. 101.
    Tamura H, Maeda N, Matsumoto R, Nakayama A, Hayashi H, Ikushima K, Kuraya M (1999) J Macromol Sci A Pure Appl Chem 36:1153CrossRefGoogle Scholar
  102. 102.
    Brzezinska KR, Deming TJ (2001) Macromolecules 34:4348CrossRefGoogle Scholar
  103. 103.
    Schwendeman JE, Wagener KB (2009) Macromol Chem Phys 210:1818CrossRefGoogle Scholar
  104. 104.
    Ast W, Hummel K (1970) Naturwissenschaften 57:545CrossRefGoogle Scholar
  105. 105.
    Seyferth K, Taube R, Dahlke M (1981) Ester group-terminated polyolefins. Ger. East Pat. 146,053, Jan 21, 1981; (1981) Chem Abstr 95:43978Google Scholar
  106. 106.
    Marmo JC, Wagener KB (1993) Macromolecules 26:2137CrossRefGoogle Scholar
  107. 107.
    Marmo JC, Wagener KB (1995) Macromolecules 28:2602CrossRefGoogle Scholar
  108. 108.
    Chasmawala M, Chung TC (1995) Macromolecules 28:1333CrossRefGoogle Scholar
  109. 109.
    Solanky SS, Campistron I, Laguerre A, Pilard J-F (2005) Macromol Chem Phys 206:1057CrossRefGoogle Scholar
  110. 110.
    Sadaka F, Campistron I, Laguerre A, Pilard J-F (2013) Polym Degrad Stabil 98:736CrossRefGoogle Scholar
  111. 111.
    Tlenkopatchev MA, Gutièrrez S (2009) Rev Latin Am Metal Mater S1:1463Google Scholar
  112. 112.
    Saetung N, Campistron I, Pascual S, Pilard J-F, Fontaine L (2011) Macromolecules 44:784CrossRefGoogle Scholar
  113. 113.
    Martìnez A, Gutièrrez S, Tlenkopatchev MA (2013) Nat Sci 5:857Google Scholar
  114. 114.
    Martìnez A, Gutièrrez S, Tlenkopatchev MA (2012) Molecules 17:6001CrossRefGoogle Scholar
  115. 115.
    Fomine S, Tlenkopatchev MA (2010) Organometallics 29:1580CrossRefGoogle Scholar
  116. 116.
    Gutìerrez S, Tlenkopatchev MA (2011) Polym Bull 66:1029CrossRefGoogle Scholar
  117. 117.
    Thorn-Csanyi E, Ruhland K (1999) Macromol Chem Phys 200:1662CrossRefGoogle Scholar
  118. 118.
    Thorn-Csanyi E, Hammer J, Zilles JU (1994) Macromol Rapid Commun 15:797CrossRefGoogle Scholar
  119. 119.
    Reyx D, Campistron I (1997) Angew Makromol Chem 247:197CrossRefGoogle Scholar
  120. 120.
    Tlenkopatchev MA, Barkenas A, Fomine S (2001) Macromol Theo Simul 10:441CrossRefGoogle Scholar
  121. 121.
    Fainleib A, Pires RV, Lucas EF, Soares BG (2013) Polìmeros 23:441CrossRefGoogle Scholar
  122. 122.
    Obrecht W, Müller JM, Nuyken O, Berke H, Meca L, Triscikova L (2008) Method for the degradation of nitrile rubber by metathesis in the presence of Ruthenium- or Osmium-based catalysts. US Patent 7,470,750 B2, Dec 30, 2008; (2007) Chem Abstr 146:296420Google Scholar
  123. 123.
    Guèrin F (2004) Process for the preparation of low molecular weight hydrogenated nitrile rubber. US Patent 6,673,881 B2, Jan 6, 2004; (2002) Chem Abstr 138:40520Google Scholar
  124. 124.
    Stelzer F, Hobisch G, Pongratz T, Hummel K (1988) J Mol Catal 46:433CrossRefGoogle Scholar
  125. 125.
    Zhan Z-YJ (2012) Methods of modifying polymers with highly active and selective metathesis catalysts. US 2012/0252982 A1, Oct 4, 2012; (2012) Chem Abstr 157:549087Google Scholar
  126. 126.
    Hummel K (1985) J Mol Catal 28:381CrossRefGoogle Scholar
  127. 127.
    Thorn-Csanyi E, Perner H (1979) Makromol Chem 180:919CrossRefGoogle Scholar
  128. 128.
    Hummel K, Ast W (1973) Makormol Chem 166:39lCrossRefGoogle Scholar
  129. 129.
    Lorber F, Hummel K (1973) Makromol Chem 171:257CrossRefGoogle Scholar
  130. 130.
    Thorn-Csanyi E, Perner H (1986) J Mol Catal 36:187CrossRefGoogle Scholar
  131. 131.
    Hummel K (1982) Pure Appl Chem 54:351CrossRefGoogle Scholar
  132. 132.
    Thummer R, Stelzer F, Hummel K (1975) Makromol Chem 176:1703CrossRefGoogle Scholar
  133. 133.
    Stelzer F, Hummel K, Graimann C, Hobisch J, Martl MG (1987) Makromol Chem 188:1795CrossRefGoogle Scholar
  134. 134.
    Ast W, Bosch H, Kerber R (1979) Angew Makromol Chem 76:67CrossRefGoogle Scholar
  135. 135.
    Kumar VNG, Hummel K, Hönig H (1981) Angew Makromol Chem 96:93CrossRefGoogle Scholar
  136. 136.
    Korshak YV, Tlenkopatchev MA, Dolgoplosk BA, Avdeikina EG, Kuterov DF (1982) J Mol Catal 15:207CrossRefGoogle Scholar
  137. 137.
    Hummel K, Kiattanavith N, Bernard E (1993) Angew Makromol Chem 207:137CrossRefGoogle Scholar
  138. 138.
    Alimuniar A, Yarmo MA, Rahman MZA Kohjiya S, Ikeda Y, Yamashita S (1990) Polym Bull 23:119Google Scholar
  139. 139.
    Wagener KB, Puts RD, Smith DW Jr (1991) Makromol Chem, Rapid Commun 12:419CrossRefGoogle Scholar
  140. 140.
    Thorn-Csanyi E (1994) Rubber Chem Technol 67:786CrossRefGoogle Scholar
  141. 141.
    Craig SW, Manzer JA, Coughlin EB (2001) Macromolecules 34:7929CrossRefGoogle Scholar
  142. 142.
    Sedransk KL, Kaminski CF, Hutchings LR, Moggridge GD (2011) Polym Degrad Stabil 96:1074CrossRefGoogle Scholar
  143. 143.
    Sashuk V, Peeck LH, Plenio H (2010) Chem Eur J 16:3983CrossRefGoogle Scholar
  144. 144.
    Wolf S, Plenio H (2011) Green Chem 13:2008CrossRefGoogle Scholar
  145. 145.
    Ouardad S, Peruch F (2014) Polym Degrad Stabil 99:249CrossRefGoogle Scholar
  146. 146.
    Hummel K, Groyer S, Lechner H (1982) Kaut Gummi Kunst 35:731Google Scholar
  147. 147.
    Grießer H, Hummel K (1980) Colloid Polymer Sci 258:467CrossRefGoogle Scholar
  148. 148.
    Stelzer F, Hummel K, Sommer F, Baumegger E, Lesiak MC (1987) Rubber Chem Technol 60:600CrossRefGoogle Scholar
  149. 149.
    Hummel K, Raithofer G (1976) Angew Makromol Chem 50:183CrossRefGoogle Scholar
  150. 150.
    Hummel K, Stelzer F, Hobisch G, Hartmann B (1987) Angew Makromol Chem 155:143CrossRefGoogle Scholar
  151. 151.
    van Ooij WJ, Harakuni PB, Buytaert G (2009) Rubber Chem Technol 82:315CrossRefGoogle Scholar
  152. 152.
    Leimgruber S, Kern W, Hochenauer R, Melmer M, Holzner A, Trimmel G (2015) Rubber Chem Technol. doi: 10.5254/rct.14.85.946 Google Scholar
  153. 153.
    Zümreoglu-Karan B, Bozkurt C, Imamoglu (1992) Polymer J 24:25Google Scholar
  154. 154.
    Demel S (2003) PhD Thesis, Graz University of Technology, p 116Google Scholar
  155. 155.
    Wolf S, Plenio H (2013) Green Chem 15:315CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria
  2. 2.Polymer Competence Center Leoben GmbHLeobenAustria

Personalised recommendations