Monatshefte für Chemie - Chemical Monthly

, Volume 146, Issue 7, pp 1153–1160 | Cite as

Initiation efficacy of halo-chelated cis-dichloro-configured ruthenium-based second-generation benzylidene complexes in ring-opening metathesis polymerization

  • Julia Wappel
  • Krzysztof Grudzień
  • Michał Barbasiewicz
  • Michał Michalak
  • Karol Grela
  • Christian Slugovc
0riginal Paper

Abstract

The initiation efficacy of eight differently substituted halo-chelated cis-dichloro-configured ruthenium-based second-generation benzylidene complexes was assessed in the ring-opening metathesis polymerization of a norbornene derivative in two solvents and at three temperatures. From the evaluation of the number average molecular masses and the molecular mass distributions of the resulting polymers a conclusion on the level of initiation was possible and it was found that the metathesis-inactive cis-dichloro-configured pre-initiators quickly isomerize to their metathesis-active trans-dichloro isomers leading to remarkably high initiation efficiencies in toluene at 80 °C. Even controlled polymerization is feasible under these conditions. Further, the diverse initiation efficacies of the eight pre-initiators at ambient temperature are discussed with the emphasis to identify whether the position of the cistrans equilibrium or the speed of the isomerization is responsible for the results obtained in the polymerization experiments.

Graphical abstract

Keywords

Olefin metathesis Ruthenium Structure–activity relationships Polymerizations 

References

  1. 1.
    Grela K (ed) (2014) Olefin metathesis, theory and practice. Wiley, HobokenGoogle Scholar
  2. 2.
    Trnka TM, Grubbs RH (2001) Acc Chem Res 34:18CrossRefGoogle Scholar
  3. 3.
    Garber SB, Kingsbury JS, Gray BL, Hoveyda AH (2000) J Am Chem Soc 122:8168CrossRefGoogle Scholar
  4. 4.
    Vougioukalakis GC, Grubbs RH (2010) Chem Rev 110:1746CrossRefGoogle Scholar
  5. 5.
    Samojłowicz C, Bieniek M, Grela K (2009) Chem Rev 109:3708CrossRefGoogle Scholar
  6. 6.
    Vidavsky Y, Anaby A, Lemcoff NG (2012) Dalton Trans 41:32CrossRefGoogle Scholar
  7. 7.
    Kingsburry JS, Hoveyda AH (2005) J Am Chem Soc 127:4510CrossRefGoogle Scholar
  8. 8.
    Vorfalt T, Wannowius K-J, Thiel V, Plenio H (2010) Chem Eur J 16:12312CrossRefGoogle Scholar
  9. 9.
    Bates JM, Lummiss JAM, Bailey GA, Fogg DE (2014) ACS Catal 4:2387CrossRefGoogle Scholar
  10. 10.
    Thiel V, Hendann M, Wannowius K-J, Plenio H (2012) J Am Chem Soc 134:1104CrossRefGoogle Scholar
  11. 11.
    Pump E, Cavallo L, Slugovc C (2015) Monatsh Chem. doi:10.1007/s00706-015-1433-8 Google Scholar
  12. 12.
    Poater A, Ragone F, Correa A, Szadkowska A, Barbasiewicz M, Grela K, Cavallo L (2010) Chem Eur J 16:14354CrossRefGoogle Scholar
  13. 13.
    Pump E, Poater A, Zirngast M, Torvisco A, Fischer R, Cavallo L, Slugovc C (2014) Organometallics 33:2806CrossRefGoogle Scholar
  14. 14.
    Barbasiewicz M, Michalak M, Grela K (2012) Chem Eur J 18:14237CrossRefGoogle Scholar
  15. 15.
    Michrowska A, Bujok R, Harutyunyan S, Sashuk V, Dolgonos G, Grela K (2004) J Am Chem Soc 126:9318CrossRefGoogle Scholar
  16. 16.
    Barbasiewicz M, Błocki K, Malińska M, Pawłowski R (2013) Dalton Trans 42:355CrossRefGoogle Scholar
  17. 17.
    Barbasiewicz M, Malińska M, Błocki K (2013) J Organomet Chem 745–746:8CrossRefGoogle Scholar
  18. 18.
    Grudzień K, Żukowska K, Malińska M, Woźniak K, Barbasiewicz M (2014) Chem Eur J 20:2819CrossRefGoogle Scholar
  19. 19.
    Leitgeb A, Mereiter K, Slugovc C (2012) Monatsh Chem 143:901CrossRefGoogle Scholar
  20. 20.
    Urbina-Blanco CA, Bantreil X, Wappel J, Schmid TE, Slawin AMZ, Slugovc C, Cazin CSJ (2013) Organometallics 32:6240CrossRefGoogle Scholar
  21. 21.
    Leitgeb A, Szadkowska A, Michalak M, Barbasiewicz M, Grela K, Slugovc C (2011) J Polym Sci, Part A: Polym Chem 49:3448CrossRefGoogle Scholar
  22. 22.
    Urbina-Blanco CA, Leitgeb A, Slugovc C, Bantreil X, Clavier H, Slawin AMZ, Nolan SP (2011) Chem Eur J 17:5045CrossRefGoogle Scholar
  23. 23.
    Broggi J, Urbina-Blanco CA, Clavier H, Leitgeb A, Slugovc C, Slawin AMZ, Nolan SP (2010) Chem Eur J 16:9215CrossRefGoogle Scholar
  24. 24.
    Strasser S, Pump E, Fischer RC, Slugovc C (2015) Monatsh Chem. doi:10.1007/s00706-015-1484-x Google Scholar
  25. 25.
    Burtscher D, Lexer C, Mereiter K, Winde R, Karch R, Slugovc C (2008) J Polym Sci, Part A: Polym Chem 46:4630CrossRefGoogle Scholar
  26. 26.
    Aharoni A, Vidavsky Y, Diesendruck CE, Ben-Asuly A, Goldberg I, Lemcoff NG (2011) Organometallics 30:1607CrossRefGoogle Scholar
  27. 27.
    Ginzburg Y, Anaby A, Vidavsky Y, Diesendruck CE, Ben-Asuly A, Goldberg I, Lemcoff NG (2011) Organometallics 30:3430CrossRefGoogle Scholar
  28. 28.
    Diesendruck CE, Tzur E, Ben-Asuly A, Goldberg I, Straub BF, Lemcoff NG (2009) Inorg Chem 48:10819CrossRefGoogle Scholar
  29. 29.
    Geier R, Wappl C, Freiszmuth H, Slugovc C, Gescheidt G (2015) Polym Chem 6:2488CrossRefGoogle Scholar
  30. 30.
    Leitgeb A, Wappel J, Urbina-Blanco CA, Strasser S, Wappl C, Cazin CSJ, Slugovc C (2014) Monatsh Chem 145:1513CrossRefGoogle Scholar
  31. 31.
    Devine PN, Oh T (1992) J Org Chem 57:397CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Julia Wappel
    • 1
  • Krzysztof Grudzień
    • 3
  • Michał Barbasiewicz
    • 2
  • Michał Michalak
    • 2
  • Karol Grela
    • 3
  • Christian Slugovc
    • 1
  1. 1.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria
  2. 2.Faculty of ChemistryUniversity of WarsawWarsawPoland
  3. 3.Faculty of Chemistry, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland

Personalised recommendations