Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 146, Issue 4, pp 697–704 | Cite as

Effects of tertiary amine catalysis on the regioselectivity of anisole chlorination with trichloroisocyanuric acid

  • Nenad Maraš
  • Marijan KočevarEmail author
Original Paper

Abstract

Tertiary amines and their salts in dichloromethane were found to induce a strong para regioselectivity in the chlorination of anisole as the model substrate with trichloroisocyanuric acid (TCCA). Using a catalyst loading of 6 mol % trimethylammonium chloride gave a para vs. ortho selectivity of 38:1. This effect is attributed to the in situ formation of N-chlorotrialkylammonium salts, which chlorinate alkyl aryl ethers with a high regioselectivity. The regioselectivity and monochlorination selectivity for anisole chlorination with TCCA in numerous solvents are reported. The chlorination of a few related benzenoid substrates under selected conditions is described.

Graphical Abstract

Keywords

Chlorination Catalysis Electrophilic substitutions Regioselectivity DABCO 

Notes

Acknowledgments

We thank the Ministry of Education, Science and Sport of the Republic of Slovenia and the Slovenian Research Agency for financial support (P1-0230-0103). Dr. B. Kralj and Dr. D. Žigon (Center for Mass Spectroscopy, ‘Jožef Stefan’ Institute, Ljubljana, Slovenia) are gratefully acknowledged for the mass measurements.

Supplementary material

706_2014_1383_MOESM1_ESM.pdf (494 kb)
Supplementary material 1 (PDF 493 kb)

References

  1. 1.
    Urch CJ (2003) Vinyl and Aryl Halides. In: Ley SV (ed) Comprehensive Organic Functional Group Tansformations, vol 2. Elsevier, Amsterdam, p 605Google Scholar
  2. 2.
    Stanforth SP (2004) Vinyl and Aryl Halides. In: Ramsden C (ed) Organic Functional Group Tansformations II, vol 2. Elsevier, Amsterdam, p 561Google Scholar
  3. 3.
    Larock RC (1999) Comprehensive organic transformations. Wiley, New York, p 619Google Scholar
  4. 4.
    Cowdrey WA, Davies DS (1952) Q Rev. Chem Soc 6:358Google Scholar
  5. 5.
    Bay E, Bak DA, Timony PE, Leone-Bay A (1990) J Org Chem 55:3415CrossRefGoogle Scholar
  6. 6.
    Wu H, Hynes J Jr (2010) Org Lett 12:1192CrossRefGoogle Scholar
  7. 7.
    Sheppard TD (2009) Org Biomol Chem 7:1043CrossRefGoogle Scholar
  8. 8.
    Norman ROC, Radda GK (1961) J Chem Soc 3610Google Scholar
  9. 9.
    Harvey DR, Norman ROC (1961) J Chem Soc 3604Google Scholar
  10. 10.
    Smith K, Butters M, Paget WE, Goubet D, Fromentina E, Nay B (1999) Green Chem 1:83CrossRefGoogle Scholar
  11. 11.
    Smith K, El-Hiti GA (2011) Green Chem 13:1579CrossRefGoogle Scholar
  12. 12.
    Kodomari M, Takahashi S, Yoshitomi S (1987) Chem Lett 16:1901CrossRefGoogle Scholar
  13. 13.
    Yang L, Lu Z, Stahl SS (2009) Chem Commun 6460Google Scholar
  14. 14.
    Wang H, Wen K, Nurahmat N, Shao Y, Zhang H, Wei C, Li Y, Shen Y, Sun Z (2012) Beilstein J Org Chem 8:744CrossRefGoogle Scholar
  15. 15.
    Kamigata N, Satoh T, Yoshida M, Matsuyama H, Kameyama M (1988) Bull Chem Soc Jpn 61:2226CrossRefGoogle Scholar
  16. 16.
    Guy A, Lemaire JP, Guetté M (1982) Tetrahedron 38:2339CrossRefGoogle Scholar
  17. 17.
    Dijkstra D, Grol CJ (1992) Bioorg Med Chem Lett 2:115CrossRefGoogle Scholar
  18. 18.
    Hirano M, Yakabe S, Monobe H, Clark JH, Morimoto T (1997) J Chem Soc Perkin Trans 1:3081CrossRefGoogle Scholar
  19. 19.
    Hirano M, Yakabe S, Monobe H, Morimoto T (1997) Can J Chem 75:1905CrossRefGoogle Scholar
  20. 20.
    Yoshida M, Mochizuki H, Kamigata N (1988) Chem Lett 17:2017CrossRefGoogle Scholar
  21. 21.
    Watson WD (1985) J Org Chem 50:2145CrossRefGoogle Scholar
  22. 22.
    Olah GA, Ohannesian L, Arvanaghi M (1986) Synthesis 868Google Scholar
  23. 23.
    Smith JRL, McKeer LC (1983) Tetrahedron Lett 24:3117CrossRefGoogle Scholar
  24. 24.
    Smith JRL, McKeer LC, Taylor JM (1987) J Chem Soc Perkin Trans 2:1533CrossRefGoogle Scholar
  25. 25.
    Smith JRL, McKeer LC, Taylor JM (1988) J Chem Soc Perkin Trans 2:385CrossRefGoogle Scholar
  26. 26.
    Smith JRL, McKeer LC, Taylor JM (1989) J Chem Soc Perkin Trans 2:1529CrossRefGoogle Scholar
  27. 27.
    Smith JRL, McKeer LC, Taylor JM (1989) J Chem Soc Perkin Trans 2:1537CrossRefGoogle Scholar
  28. 28.
    Smith JRL, McKeer LC, Taylor JM (1989) Org Synth 67:222CrossRefGoogle Scholar
  29. 29.
    Minisci F, Vismara E, Fontana F, Platone E, Faraci G (1989) J Chem Soc Perkin Trans 2:123CrossRefGoogle Scholar
  30. 30.
    Carloni P, Eberson L, Greci L, Stipa P, Tosi G (1991) J Chem Soc Perkin Trans 2:1779CrossRefGoogle Scholar
  31. 31.
    Ogata Y, Takagi K, Kondo Y, Hsin SC, Woo WI, Chen FC (1983) J Chin Chem Soc 30:261Google Scholar
  32. 32.
    Smith K, Butters M (1988) Tetrahedron Lett 29:1319CrossRefGoogle Scholar
  33. 33.
    Fujisaki S, Eguchi H, Omura A, Okamoto A, Nishida A (1993) Bull Chem Soc Jpn 66:1576CrossRefGoogle Scholar
  34. 34.
    Gnaim JM, Sheldon RA (1995) Tetrahedron Lett 36:3893CrossRefGoogle Scholar
  35. 35.
    Saper NI, Snider BB (2014) J Org Chem 79:809CrossRefGoogle Scholar
  36. 36.
    Kovacic P, Lowery MK, Field KW (1970) Chem Rev 70:639CrossRefGoogle Scholar
  37. 37.
    Maraš N, Polanc S, Kočevar M (2008) Tetrahedron 64:11618CrossRefGoogle Scholar
  38. 38.
    Maraš N, Polanc S, Kočevar M (2010) Acta Chim Slov 57:29Google Scholar
  39. 39.
    Maraš N, Perdih F, Kočevar M (2011) Cent Eur J Chem 9:904CrossRefGoogle Scholar
  40. 40.
    Maraš N, Polanc S, Kočevar M (2012) Org Biomol Chem 10:1300CrossRefGoogle Scholar
  41. 41.
    Tilstam U, Weinmann H (2002) Org Process Res Dev 6:384CrossRefGoogle Scholar
  42. 42.
    Hiegel GA, Pozzi G, AnuMahadevan (2013) Trichloroisocyanuric acid. e-EROS encyclopedia of reagents for organic synthesis. Wiley, USA. doi: 10.1002/047084289X.rt209.pub3
  43. 43.
    Mendonca GF, de Mattos MCS (2013) Curr Org Synth 10:820CrossRefGoogle Scholar
  44. 44.
    Juenge EC, Beal DA, Duncan WP (1970) J Org Chem 35:719CrossRefGoogle Scholar
  45. 45.
    Rosevear J, Wilshire JFK (1980) Aust J Chem 33:843CrossRefGoogle Scholar
  46. 46.
    Manschand PS, Coffen DL, Belica PS, Wong F, Wong HS, Berger L (1994) Heterocycles 39:833CrossRefGoogle Scholar
  47. 47.
    Mendonça GF, Magalhães RR, de Mattos MCS, Esteves PM (2005) J Braz Chem Soc 16:695CrossRefGoogle Scholar
  48. 48.
    Maraš N (2011) SyntheticPage 483. doi: 10.1039/SP483
  49. 49.
    Vražič D, Jereb M, Laali KK, Stavber S (2013) Molecules 18:74Google Scholar
  50. 50.
    Burakevich JV (1979) Cyanuric and isocyanuric acids. In: Kirk-Othmer encyclopedia of chemical technology, 3rd edn, vol 7. Wiley, New York, p 397Google Scholar
  51. 51.
    Radhakrishnamurti PS, Rath NK, Panda RK (1987) Indian J Chem 26:407Google Scholar
  52. 52.
    Ogata Y, Kimura M, Kondo Y (1984) J Chem Soc Perkin Trans 2:451CrossRefGoogle Scholar
  53. 53.
    van Summeren RP, Romaniuk A, IJpeij EG, Alsters PL (2012) Catal Sci Technol 2:2052Google Scholar
  54. 54.
    Baidya M, Kobayashi S, Brotzel F, Schmidhammer U, Riedle E, Mayr H (2007) Angew Chem Int Ed 46:6176CrossRefGoogle Scholar
  55. 55.
    Baghernejad B (2010) Eur J Chem 1:54CrossRefGoogle Scholar
  56. 56.
    Kranjc K, Kočevar M (2008) Synlett 2613Google Scholar
  57. 57.
    Juranovič A, Kranjc K, Perdih F, Polanc S, Kočevar M (2011) Tetrahedron 67:3490CrossRefGoogle Scholar
  58. 58.
    Juranovič A, Kranjc K, Polanc S, Perdih F, Kočevar M (2012) Monatsh Chem 143:771CrossRefGoogle Scholar
  59. 59.
    Banks RE, Mohialdin-Khaffaf SN, Sankar Lal G, Sharif I, Syvret RG (1992) Chem Commun 595Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Lek Pharmaceuticals d.d.Sandoz Development Center Slovenia, API DevelopmentMengešSlovenia

Personalised recommendations