Monatshefte für Chemie - Chemical Monthly

, Volume 144, Issue 12, pp 1825–1832 | Cite as

Conformational properties and chiral separation of dibenzo[b,f]thieno[3,4-d]-fused oxepines and thiepines

  • Goran Landek
  • Ivana Ozimec Landek
  • Dijana Pešić
  • Milan Mesić
  • Vitomir Šunjić
Original Paper


The dynamic properties of planar chiral 1-hydroxymethyl-substituted dibenzo[b,f]thieno[3,4-d]-fused oxepine and thiepine derivatives have been investigated by use of variable-temperature nuclear magnetic resonance spectroscopy combined with line-shape analysis, chiral column chromatography, and molecular modelling. NMR data and computational studies revealed the height of the energy barrier for ring inversion in thiepine derivatives was sufficient to enable the existence of a pair of conformational enantiomers at ambient temperature. Their resolution was achieved by chiral column high-performance liquid chromatography (HPLC). The absolute conformation of the enantiomers is proposed. This is the first chromatographic separation of planar chiral enantiomers of [b,d,f]-fused thiepine derivatives.

Graphical Abstract


8-Oxa-2-thia-dibenzo[e,h]azulene 2,8-Dithiadibenzo[e,h]azulene Dynamic NMR spectroscopy Molecular modelling Chiral resolution 



The authors express their gratitude to Mrs. Ana Čikoš for initiating the NMR study and to Mr. Vladimir Vinković, Ruđer Bošković Institute, Zagreb, for his help and suggestions with chiral separations.


  1. 1.
    Rodgers JR, Horn AS, Kennard O (1976) J Pharm Pharmacol 28:246CrossRefGoogle Scholar
  2. 2.
    Rodgers JR, Horn AS, Kennard O (1975) J Pharm Pharmacol 27:859CrossRefGoogle Scholar
  3. 3.
    Drake JAG, Jones DW (1977) J Pharm Pharmacol 29:303CrossRefGoogle Scholar
  4. 4.
    McNaught AD, Wilkinson A (1997) IUPAC Compendium of chemical terminology. Blackwell Science, Oxford., accessed 25 Nov 2012
  5. 5.
    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. John Wiley & Sons, New York, p 1166Google Scholar
  6. 6.
    Schlögl K (1984) Planar chiral molecular structures. In: Vögtle F, Weber E (eds) Topics in current chemistry. Stereochemistry, vol 125. Springer, Berlin, p 27Google Scholar
  7. 7.
    Clayden J, Moran WJ, Edwards PJ, LaPlante SR (2009) Angew Chem Int Ed 48:6398CrossRefGoogle Scholar
  8. 8.
    Lunazzi L, Mazzanti A, Minzoni M (2007) J Org Chem 72:2501CrossRefGoogle Scholar
  9. 9.
    Ōki M (1983) Recent advances in atropisomerism. In: Allinger NL, Eliel EL, Wilen SH (eds) Topics in Stereochemistry, vol 14. John Wiley & Sons, New YorkGoogle Scholar
  10. 10.
    Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M (2005) Angew Chem Int Ed 44:5384CrossRefGoogle Scholar
  11. 11.
    Eveleigh P, Hulme EC, Schudt C, Birdsall NJM (1989) Mol Pharmacol 35:477Google Scholar
  12. 12.
    Reist M, Testa B, Carrupt P-A, Jung M (1997) Enantiomer 2:147Google Scholar
  13. 13.
    Reist M, Testa B, Carrupt PA (2003) Drug racemization and its significance in pharmaceutical research. In: Eichelbaum M, Testa B, Somogyi A (eds) Stereochemical aspects of drug action and disposition. Handbook of experimental pharmacology, vol 153. Springer-Verlag, Berlin, p 91CrossRefGoogle Scholar
  14. 14.
    LaPlante SR, Fader LD, Fandrick KR, Fandrick DR, Hucke O, Kemper R, Miller SPF, Edwards PJ (2011) J Med Chem 54:7005CrossRefGoogle Scholar
  15. 15.
    LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O (2011) ChemMedChem 6:505CrossRefGoogle Scholar
  16. 16.
    Ozimec Landek I, Pešić D, Novak P, Stanić B, Nujić K, Merćep M, Mesić M (2009) Heterocycles 78:2489CrossRefGoogle Scholar
  17. 17.
    Jennings WB, Rutheford M, Agarwal SK, Boyd DR, Malone JF, Kennedy DA (1986) J Chem Soc Chem Commun 970Google Scholar
  18. 18.
    Nógrádi M, Ollis WD, Sutherland IO (1970) J Chem Soc D Chem Commun 158Google Scholar
  19. 19.
    Rupčić R, Modrić M, Hutinec A, Čikoš A, Stanić B, Mesić M, Pešić D, Merćep M (2010) J Heterocycl Chem 47:640Google Scholar
  20. 20.
    Dürr H (1967) Z Naturforsch 22:786Google Scholar
  21. 21.
    Molecular Operating Environment (MOE) 2010.10 (2010) Chemical Computing Group Inc., 1010 Sherbrooke St. W. Suite 910, Montreal, Quebec, Canada H3A 2R7Google Scholar
  22. 22.
    Corey JY, Pitts AJ, Winter REK, Rath NP (1995) J Organomet Chem 499:113CrossRefGoogle Scholar
  23. 23.
    Corey ER, Corey JY (1975) J Organomet Chem 101:177CrossRefGoogle Scholar
  24. 24.
    Jaunin A, Petcher TJ, Weber HP (1977) J Chem Soc Perkin Trans 2:186Google Scholar
  25. 25.
    Bandoli G, Nicolini M (1982) J Crystallogr Spectrosc Res 12:425CrossRefGoogle Scholar
  26. 26.
    Huang D-M, Wang Y-B, Visco LM, Tao F-M (2005) Chem Phys Lett 407:222CrossRefGoogle Scholar
  27. 27.
    Cook SA, Corlett GK, Legon AC (1998) J Chem Soc, Faraday Trans 94:1565CrossRefGoogle Scholar
  28. 28.
    Budzalaar PH (2006) gNMR. Ivorysoft, OxfordGoogle Scholar
  29. 29.
    Yashima E (2001) J Chromatogr A 906:105CrossRefGoogle Scholar
  30. 30.
    Watt AP, Hitzel L, Mortishire-Smith RJ (2002) J Biochem Biophys Methods 54:275CrossRefGoogle Scholar
  31. 31.
    Snatzke G, Konowal A, Sabljić S, Blažević N, Šunjić V (1982) Croat Chem Acta 55:435Google Scholar
  32. 32.
    Kajtár M, Kajtár J, Rohricht J, Ángyán JG (1989) Croat Chem Acta 62:245Google Scholar
  33. 33.
    Pescitelli G, Berova N, Xiao TL, Rozhkov RV, Larock RC, Armstrong DW (2003) Org Biomol Chem 1:186CrossRefGoogle Scholar
  34. 34.
    Di Bari L, Pescitelli G, Marchetti F, Salvadori P (2000) J Am Chem Soc 122:6395CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Goran Landek
    • 1
  • Ivana Ozimec Landek
    • 1
    • 2
  • Dijana Pešić
    • 1
  • Milan Mesić
    • 1
  • Vitomir Šunjić
    • 3
  1. 1.GlaxoSmithKline Research Centre Zagreb Limited, ChemistryZagrebCroatia
  2. 2.Fidelta LtdZagrebCroatia
  3. 3.Chirallica d.o.oZagrebCroatia

Personalised recommendations