Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 144, Issue 10, pp 1455–1459 | Cite as

Crystal structure and vibrational spectra of hydrazinium(+1) fluorocadmate(II)

  • Clara Sousa-Silva
  • Gleb Veryasov
  • Evgeny Goreshnik
  • Maja Ponikvar
  • Adolf Jesih
Original Paper

Abstract

X-ray crystal structure determination at 200 K revealed that N2H5CdF3 crystallizes in the orthorhombic space group Pnam, with unit cell dimensions a = 1,421.0(2), b = 694.29(11), c = 447.52(7) pm. The structure consists of N2H5 + cations and double Cd–F chains interconnected by a hydrogen bonding network. The N–N stretching vibration in N2H5CdF3 is active in infrared and Raman spectroscopy with an N–N stretching infrared band at 1,002 cm−1 and a Raman band at 1,008 cm−1.

Graphical abstract

Keywords

IR spectroscopy Raman spectroscopy Crystal structure Coordination chemistry Fluorides 

Notes

Acknowledgments

Financial support of the Slovenian Research Agency (ARRS) is acknowledged.

References

  1. 1.
    Slivnik J, Rahten A, Maček J, Sedej B (1979) Bull Slov Chem Soc 26:19Google Scholar
  2. 2.
    Volavšek B, Rahten A, Slivnik J (1981) Bull Slov Chem Soc 28:175Google Scholar
  3. 3.
    Klampfer P, Benkič P, Ponikvar M, Rahten A, Lesar A, Jesih A (2003) Monatsh Chem 134:1CrossRefGoogle Scholar
  4. 4.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  5. 5.
    Milićev S, Rahten A, Borrmann H, Šiftar J (1997) J Raman Spectrosc 28:315CrossRefGoogle Scholar
  6. 6.
    Slivnik J, Maček J, Rahten A, Sedej B (1980) Thermochim Acta 39:21CrossRefGoogle Scholar
  7. 7.
    Skapin T, Mazej Z, Makarowicz A, Jesih A, Nickkho-Amiry M, Schroeder SLM, Weiher N, Žemva B, Winfield JM (2011) J Fluorine Chem 132:703CrossRefGoogle Scholar
  8. 8.
    Suresh K, Patil KC (1993) J Mater Sci Lett 12:572Google Scholar
  9. 9.
    Aruna ST, Mukasyan AS (2008) Curr Opin Solid State Mater Sci 12:44CrossRefGoogle Scholar
  10. 10.
    Anderson MR, Brown ID (1975) Acta Crystallogr B31:1500Google Scholar
  11. 11.
    Golič L, Lazarini F (1974) Monatsh Chem 105:735CrossRefGoogle Scholar
  12. 12.
    Milićev S, Maček J (1985) Spectrochim Acta 41A:651Google Scholar
  13. 13.
    Jesih A, Rahten A, Benkič P, Skapin T, Pejov L, Petruševski VM (2004) J Solid State Chem 177:4482CrossRefGoogle Scholar
  14. 14.
    Hargittai M (2000) Chem Rev 100:2233CrossRefGoogle Scholar
  15. 15.
    Givan A, Loewenschuss A (1980) J Chem Phys 72:3809CrossRefGoogle Scholar
  16. 16.
    Loewenschuss A, Ron A, Schnepp A (1969) J Chem Phys 50:2502CrossRefGoogle Scholar
  17. 17.
    Vogel AI (1978) Vogel’s textbook of quantitative inorganic analysis: including elementary instrumental analysis. Longman, London, p 389Google Scholar
  18. 18.
    Pribil R (1982) Applied complexometry, vol 5. Pergamon, Oxford, p 164Google Scholar
  19. 19.
    Ponikvar M, Sedej B, Pihlar B, Žemva B (2000) Anal Chim Acta 418:113CrossRefGoogle Scholar
  20. 20.
    Liebman JF, Ponikvar M (2005) Struct Chem 16:521CrossRefGoogle Scholar
  21. 21.
    TeXan for Windows (1997–1999) version 1.06: Crystal structure analysis package, molecular structure corporationGoogle Scholar
  22. 22.
    Sheldrick GM (2008) Acta Crystallogr A64:112Google Scholar
  23. 23.
    Farrugia LJ (1999) J Appl Crystallogr 32:837CrossRefGoogle Scholar
  24. 24.
    DIAMOND (2004–2005) v3.1. Crystal Impact GbR, Bonn, GermanyGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Clara Sousa-Silva
    • 1
  • Gleb Veryasov
    • 1
  • Evgeny Goreshnik
    • 1
  • Maja Ponikvar
    • 1
  • Adolf Jesih
    • 1
  1. 1.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations