Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 144, Issue 6, pp 817–823 | Cite as

Spherical aromaticity of Jahn–Teller active fullerene ions

  • Marko Perić
  • Ljubica Andjelković
  • Matija Zlatar
  • Aleksandar S. Nikolić
  • Claude Daul
  • Maja Gruden-PavlovićEmail author
Original Paper

Abstract

Density functional theory was applied to compute the nucleus-independent chemical shifts of fullerene (C60), the fullerene ion C60 10+, and the Jahn–Teller active fullerene anion C60 and cation C60 +. Positioning a 3He nucleus inside the cage of each of these fullerene species facilitates investigations of the substantial differences among them, 3He NMR chemical shifts can provide important data on the aromatic behavior of these molecular cages. Thus, we also calculated the NMR chemical shift of a 3He atom positioned at the center of each fullerene species investigated (C60, C60 10+, C60 , and C60 +). The data obtained revealed significant differences in the aromatic behavior of the C60 (moderately aromatic) and C60 10+ (highly aromatic) species. The values of the nucleus-independent chemical shift parameters were also scanned along the intrinsic distortion path for the C60 and C60 + species. In both cases, antiaromatic character decreases with increasing deviation from high-symmetry structures to low-symmetry global minimum points, resulting in the antiaromatic C60 and weakly aromatic C60 +.

Graphical Abstract

Keywords

Density functional theory Spherical aromaticity Jahn–Teller effect Fullerene ions 

Notes

Acknowledgments

This work was supported by the Serbian Ministry of Education and Science (Grant No. 172035) and the Swiss National Science Foundation.

References

  1. 1.
    Hirsch A, Chen Z, Jiao H (2000) Angew Chem Int Ed 39:3915CrossRefGoogle Scholar
  2. 2.
    Hirsch A, Chen Z, Jiao H (2001) Angew Chem Int Ed 40:2834CrossRefGoogle Scholar
  3. 3.
    Chen Z, Jiao H, Hirsch A, Thiel W (2001) J Mol Model 7:161Google Scholar
  4. 4.
    Poater J, Solà M (2011) Chem Commun 47:11647CrossRefGoogle Scholar
  5. 5.
    Chen Z, King RB (2005) Chem Rev 105:3613CrossRefGoogle Scholar
  6. 6.
    Bühl M, Hirsch A (2001) Chem Rev 101:1153CrossRefGoogle Scholar
  7. 7.
    Bean DE, Muya JT, Fowler PW, Nguyen MT, Ceulemans A (2011) Phys Chem Chem Phys 13:20855CrossRefGoogle Scholar
  8. 8.
    Jahn HA, Teller E (1937) Proc R Soc Lond Ser A 161:220CrossRefGoogle Scholar
  9. 9.
    Bersuker IB (2006) The Jahn–Teller effect. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Tsipis AC (2009) Phys Chem Chem Phys 11:8244CrossRefGoogle Scholar
  11. 11.
    Andjelković LJ, Perić M, Zlatar M, Grubišić S, Gruden-Pavlović M (2012) Tetrahedron Lett 53:794CrossRefGoogle Scholar
  12. 12.
    von Ragué Schleyer P, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) J Am Chem Soc 118:6317CrossRefGoogle Scholar
  13. 13.
    Jiao H, von Ragué Schleyer P (1996) Angew Chem Int Ed 35:2383CrossRefGoogle Scholar
  14. 14.
    Saunders M, Jimenez-Vazquez HA, Cross RJ, Mroczkowski S, Freedberg DI, Anet FAL (1994) Nature 367:256CrossRefGoogle Scholar
  15. 15.
    Saunders M, Jimenez-Vazquez HA, Bangerter BW, Cross RJ, Mroczkowski S, Freedberg DI, Anet FAL (1994) J Am Chem Soc 116:3621CrossRefGoogle Scholar
  16. 16.
    Saunders M, Jimenez-Vazquez HA, Cross RJ, Billups WE, Gesenberg C, Gonzalez A, Luo W, Haddon RC, Diederich F, Herrmann A (1995) J Am Chem Soc 117:9305CrossRefGoogle Scholar
  17. 17.
    Saunders M, Cross RJ, Jimenez-Vazquez HA, Shimshi R, Khong A (1996) Science 271:1693CrossRefGoogle Scholar
  18. 18.
    Shabtai E, Weitz A, Haddon RC, Hoffman RE, Rabinovitz M, Khong A, Cross RJ, Saunders M, Cheng PC, Scott LT (1998) J Am Chem Soc 120:6389CrossRefGoogle Scholar
  19. 19.
    Bühl M, Thiel W (1995) Chem Phys Lett 233:585CrossRefGoogle Scholar
  20. 20.
    Bühl M, Patchkovskii S, Thiel W (1997) Chem Phys Lett 275:14CrossRefGoogle Scholar
  21. 21.
    Kleinpeter E, Klod S, Koch A (2008) J Org Chem 73:1498CrossRefGoogle Scholar
  22. 22.
    Zlatar M, Brogg JP, Tschannen A, Gruden-Pavlović M, Daul C (2012) In: Atanasov M, Daul C, Tregenna-Piggott PLW (eds) Vibronic interactions and the Jahn–Teller effect. Progress in theoretical chemistry and physics, vol 23. Springer, Heidelberg, p 25Google Scholar
  23. 23.
    Ramanantoanina H, Gruden-Pavlović M, Zlatar M, Daul C (2013) Int J Quantum Chem 113:802. doi: 10.1002/qua.24080 Google Scholar
  24. 24.
    Gruden-Pavlović M, García-Fernández P, Andjelković LJ, Daul C, Zlatar M (2011) J Phys Chem A 115:10801CrossRefGoogle Scholar
  25. 25.
    Zlatar M, Schläpfer C-W, Daul C (2009) The Jahn–Teller effect. In: Köppel H, Yarkoni DR, Barentzen H (eds) Fundamentals and implications for physics and chemistry, 97th edn. Springer Series in Chemical Physics. Springer, Berlin, p 131Google Scholar
  26. 26.
    Johansson MP, Jusélius J, Sundholm D (2005) Angew Chem Int Ed 44:1843CrossRefGoogle Scholar
  27. 27.
    Zanasi R, Fowler PW (1995) Chem Phys Lett 238:270CrossRefGoogle Scholar
  28. 28.
    Manini N, Dal Corso A, Fabrizio M, Tosatti E (2001) Phyl Mag B 81:793CrossRefGoogle Scholar
  29. 29.
    Ceulemans A, Fowler PW (1990) J Chem Phys 93:1221CrossRefGoogle Scholar
  30. 30.
    Swart M, Bickelhaupt FM (2008) J Comput Chem 29:724CrossRefGoogle Scholar
  31. 31.
    SCM (2010) ADF 2010.01. Scientific Computing & Modelling NV, Vrije Universiteit, Amsterdam. http://www.scm.com
  32. 32.
    Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391Google Scholar
  33. 33.
    te Velde G, Bickelhaupt FM, van Gisbergen SJA, Guerra CF, Baerends EJ, Snijders JG, Ziegler T (2001) J Comput Chem 22:931CrossRefGoogle Scholar
  34. 34.
    Vosko S, Wilk L, Nusair M (1980) Can J Phys 58:1200CrossRefGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian Inc., WallingfordGoogle Scholar
  36. 36.
    Becke AD (1986) J Chem Phys 84:4524CrossRefGoogle Scholar
  37. 37.
    Perdew JP, Yue W (1986) Phys Rev B 33:8800CrossRefGoogle Scholar
  38. 38.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Marko Perić
    • 1
  • Ljubica Andjelković
    • 1
  • Matija Zlatar
    • 1
  • Aleksandar S. Nikolić
    • 2
  • Claude Daul
    • 3
  • Maja Gruden-Pavlović
    • 2
    Email author
  1. 1.Center for Chemistry, Institute of Chemistry, Technology, and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  3. 3.Department of ChemistryUniversity of FribourgFribourgSwitzerland

Personalised recommendations