Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 144, Issue 4, pp 567–571 | Cite as

Photophysics and hydrolytic stability of betalains in aqueous trifluoroethanol

  • Fernando H. Bartoloni
  • Letícia Christina P. Gonçalves
  • Ana Clara B. Rodrigues
  • Felipe Augusto Dörr
  • Ernani Pinto
  • Erick L. BastosEmail author
Original Paper

Abstract

Betalains are natural antioxidant pigments responsible for the visible fluorescence of flowers. Although these compounds are almost exclusively soluble in water, they are very sensitive to both hydrolysis and water-catalyzed isomerization. We show that three representative betalains are soluble in 2,2,2-trifluoroethanol (TFE) and that the hydrolytic stability of these model compounds in hydroalcoholic solutions increases with increasing amount of TFE. Furthermore, TFE increases the fluorescence quantum yields of betaxanthins.

Graphical abstract

Keywords

Natural pigments Dyes Hydrolysis Schiff bases Solvent effect 

Notes

Acknowledgments

Funding was provided by the São Paulo Research Foundation (FAPESP) (07/00684-6, 10/15042-2, 11/23036-5). F.H.B. was supported by a FAPESP (10/16082-8) postdoctoral fellowship. L.C.P.G. was supported by FAPESP (07/59407-1) and Coordination for the Improvement of Higher Education Personnel (CAPES) (PNPD 427-10/2009) fellowships. E.L.B and E.P. thank the CNPq for productivity fellowships.

Supplementary material

706_2012_883_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1373 kb)

References

  1. 1.
    Strack D, Vogt T, Schliemann W (2003) Phytochemistry 62:247CrossRefGoogle Scholar
  2. 2.
    Goncalves LCP, Trassi MAD, Lopes NB, Dorr FA, dos Santos MT, Baader WJ, Oliveira VX, Bastos EL (2012) Food Chem 131:231CrossRefGoogle Scholar
  3. 3.
    Roberts MF, Strack D, Wink M (2010) Annu Plant Rev 40:20Google Scholar
  4. 4.
    Gandia-Herrero F, Garcia-Carmona F, Escribano J (2005) Food Res Int 38:879CrossRefGoogle Scholar
  5. 5.
    Gandia-Herrero F, Garcia-Carmona F, Escribano J (2005) Nature 437:334CrossRefGoogle Scholar
  6. 6.
    Schliemann W, Kobayashi N, Strack D (1999) Plant Physiol 119:1217CrossRefGoogle Scholar
  7. 7.
    Herbach KM, Stintzing FC, Carle R (2006) J Food Sci 71:R41CrossRefGoogle Scholar
  8. 8.
    Wyler H, Dreiding AS (1984) Helv Chim Acta 67:1793CrossRefGoogle Scholar
  9. 9.
    Stintzing FC, Conrad J, Klaiber I, Beifuss U, Carle R (2004) Phytochemistry 65:415CrossRefGoogle Scholar
  10. 10.
    Stintzing FC, Kugler F, Carle R, Conrad J (2006) Helv Chim Acta 89:1008CrossRefGoogle Scholar
  11. 11.
    Wybraniec S, Nowak-Wydra B, Mizrahi Y (2006) Tetrahedron Lett 47:1725CrossRefGoogle Scholar
  12. 12.
    Hilpert H, Siegfried MA, Dreiding AS (1985) Helv Chim Acta 68:1670CrossRefGoogle Scholar
  13. 13.
    Trezzini GF, Zryd JP (1991) Phytochemistry 30:1897CrossRefGoogle Scholar
  14. 14.
    Berkessel A, Adrio JA, Hüttenhain D, Neudörfl JM (2006) J Am Chem Soc 128:8421CrossRefGoogle Scholar
  15. 15.
    Hong D-P, Hoshino M, Kuboi R, Goto Y (1999) J Am Chem Soc 121:8427CrossRefGoogle Scholar
  16. 16.
    Berkessel A (2010) Catalytic oxidations with hydrogen peroxide in fluorinated alcohol solvents. In: Bäckvall J-E (ed) Modern oxidation methods. Wiley–VCH, Weinheim, p 117CrossRefGoogle Scholar
  17. 17.
    Ta-Shma R, Rappoport Z (1991) Solvent-induced changes in the selectivity of solvolyses in aqueous alcohols and related mixtures. In: Bethell D (ed) Advances in physical organic chemistry, vol 27. Academic Press, London, p 239Google Scholar
  18. 18.
    Yoshida K, Kawaguchi J, Lee S, Yamaguchi T (2008) Pure Appl Chem 80:1337CrossRefGoogle Scholar
  19. 19.
    Schwartz SJ, Von Elbe JH (1980) J Agric Food Chem 28:540CrossRefGoogle Scholar
  20. 20.
    Stintzing FC, Herbach KM, Mosshammer MR, Carle R, Yi WG, Sellappan S, Akoh CC, Bunch R, Felker P (2005) J Agric Food Chem 53:442CrossRefGoogle Scholar
  21. 21.
    Gandia-Herrero F, Escribano J, Garcia-Carmona F (2005) Planta 222:586CrossRefGoogle Scholar
  22. 22.
    Gandia-Herrero F, Escribano J, Garcia-Carmona F (2010) Planta 232:449CrossRefGoogle Scholar
  23. 23.
    Gandia-Herrero F, Garcia-Carmona F, Escribano J (2005) J Chromatogr A 1078:83CrossRefGoogle Scholar
  24. 24.
    Pal H, Nad S, Kumbhakar M (2003) J Chem Phys 119:443CrossRefGoogle Scholar
  25. 25.
    Reszka P, Schulz R, Methling K, Lalk M, Bednarski PJ (2010) ChemMedChem 5:103CrossRefGoogle Scholar
  26. 26.
    Calogero G, Di Marco G, Caramori S, Cazzanti S, Argazzi R, Bignozzi CA (2009) Energ Environ Sci 2:1162CrossRefGoogle Scholar
  27. 27.
    Martin MM (1975) Chem Phys Lett 35:105CrossRefGoogle Scholar
  28. 28.
    Minegishi S, Kobayashi S, Mayr H (2004) J Am Chem Soc 126:5174CrossRefGoogle Scholar
  29. 29.
    Williams ATR, Winfield SA, Miller JN (1983) Analyst 108:1067CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Fernando H. Bartoloni
    • 2
  • Letícia Christina P. Gonçalves
    • 2
  • Ana Clara B. Rodrigues
    • 2
  • Felipe Augusto Dörr
    • 3
  • Ernani Pinto
    • 3
  • Erick L. Bastos
    • 1
    Email author
  1. 1.Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  2. 2.Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSão PauloBrazil
  3. 3.Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloBrazil

Personalised recommendations