Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 144, Issue 3, pp 273–283 | Cite as

Solution-processed copper zinc tin sulfide thin films from metal xanthate precursors

  • Achim Fischereder
  • Alexander Schenk
  • Thomas RathEmail author
  • Wernfried Haas
  • Sébastien Delbos
  • Corentin Gougaud
  • Negar Naghavi
  • Angelika Pateter
  • Robert Saf
  • Dorith Schenk
  • Michael Edler
  • Kathrin Bohnemann
  • Angelika Reichmann
  • Boril Chernev
  • Ferdinand Hofer
  • Gregor TrimmelEmail author
Original Paper

Abstract

The quaternary semiconductor copper zinc tin sulfide (Cu2ZnSnS4, CZTS) is one of the most promising alternatives to Ga and In based semiconductors for thin film solar cells. It consists of non-toxic, cheap, and abundant elements and displays highly beneficial optical as well as electronic properties for photovoltaic applications. In this work we present a solution-based preparation method for CZTS thin films using exclusively metal xanthates as precursor materials. The introduction of branched alkyl side chains (3,3-dimethyl-2-butyl) into the metal xanthates leads to highly soluble precursors with low decomposition temperatures. In addition, these precursors already contain the sulfur needed for the formation of the metal sulfide. Therefore, no external sulfur source such as thiourea, thioacetamide, or elemental sulfur is necessary. For the preparation of CZTS thin films, solutions containing these metal xanthates were used to coat precursor layers, which were subsequently annealed at temperatures between 180 and 350 °C. Depending on the temperature, nanocrystalline films with primary crystallite sizes ranging from 3 nm (180 °C) up to approximately 43 nm (350 °C) were obtained. A combined X-ray diffraction, Raman spectroscopy, and TEM-EDX study showed that a precursor solution with a Cu/(Zn + Sn) ratio of 0.6 has to be used to obtain CZTS films, which show high optical absorption (>2 × 105 cm−1) and an optical band gap of approximately 1.31 eV. First experiments concerning photovoltaic activity of the solution processed CZTS layers were carried out.

Graphical Abstract

Keywords

Material science Chalcogenides Raman spectroscopy Electron microscopy Mass spectroscopy Thin film solar cells 

Notes

Acknowledgments

The authors thank the Christian Doppler Research Association (CDG), the Federal Ministry of Economy, Family and Youth of Austria, and Isovoltaic AG for financial support. Part of the research work was performed in project IV-1.02 of the Polymer Competence Center Leoben GmbH (PCCL, Austria) within the framework of the COMET program of the Austrian Federal Ministry of Transport, Innovation and Technology and the Federal Ministry of Economy, Family and Youth with contributions by academic and commercial partners. The PCCL is funded by the Austrian Government and the State Governments of Styria and Upper Austria. Additional support by NAWI Graz is gratefully acknowledged.

References

  1. 1.
    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M (2011) Prog Photovolt 19:894CrossRefGoogle Scholar
  2. 2.
    Peter LM (2011) Phil Trans R Soc A 369:1840CrossRefGoogle Scholar
  3. 3.
    Scragg JJ, Dale PJ, Peter LM, Zoppi G, Forbes I (2008) Phys Status Solidi B 245:1772CrossRefGoogle Scholar
  4. 4.
    Todorov TK, Kita M, Carda J, Escribano P (2009) Thin Solid Films 517:2541CrossRefGoogle Scholar
  5. 5.
    Mitzi DB, Gunawan O, Todorov TK, Wang K, Guha S (2011) Sol Energy Mater Sol Cells 95:1421CrossRefGoogle Scholar
  6. 6.
    Tanaka K, Fukui Y, Moritake N, Uchiki H (2011) Sol Energy Mater Sol Cells 95:838CrossRefGoogle Scholar
  7. 7.
    Dai P, Shen X, Lin Z, Feng Z, Xu H, Zhan J (2010) Chem Commun 46:5749CrossRefGoogle Scholar
  8. 8.
    Kishore KYB, Suresh BG, Uday BP, Sundara RV (2009) Sol Energy Mater Sol Cells 93:1230CrossRefGoogle Scholar
  9. 9.
    Todorov TK, Reuter KB, Mitzi DB (2010) Adv Mater 22:E156CrossRefGoogle Scholar
  10. 10.
    Barkhouse DAR, Gunawan O, Gokmen T, Todorov TK, Mitzi DB (2012) Prog Photovolt 20:6CrossRefGoogle Scholar
  11. 11.
    Araki H, Mikaduki A, Kubo Y, Sato T, Jimbo K, Maw W, Katagiri H, Yamazaki M, Oishi K, Takeuchi A (2008) Thin Solid Films 517:1457CrossRefGoogle Scholar
  12. 12.
    Katagiri H, Sasaguchi N, Hando S, Hoshino S, Ohashi J, Yokota T (1997) Sol Energy Mater Sol Cells 49:407CrossRefGoogle Scholar
  13. 13.
    Tanaka T, Kawasaki D, Nishio M, Guo Q, Ogawa H (2006) Phys Status Solidi C 3:2844CrossRefGoogle Scholar
  14. 14.
    Weber A, Krauth H, Perlt S, Schubert B, Kötschau I, Schorr S, Schock HW (2009) Thin Solid Films 517:2524CrossRefGoogle Scholar
  15. 15.
    Oishi K, Saito G, Ebina K, Nagahashi M, Jimbo K, Maw W, Katagiri H, Yamazaki M, Araki H, Takeuchi A (2008) Thin Solid Films 517:1449CrossRefGoogle Scholar
  16. 16.
    Schubert BA, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock HW (2011) Prog Photovolt 19:93CrossRefGoogle Scholar
  17. 17.
    Yoo H, Kim J (2010) Thin Solid Films 518:6567CrossRefGoogle Scholar
  18. 18.
    Jimbo K, Kimura R, Kamimura T, Yamada S, Maw W, Araki H, Oishi K, Katagiri H (2007) Thin Solid Films 515:5997CrossRefGoogle Scholar
  19. 19.
    Tanaka T, Nagatomo T, Kawasaki D, Nishio M, Guo Q, Wakahara A, Yoshida A, Ogawa H (2005) J Phys Chem Solids 66:1978CrossRefGoogle Scholar
  20. 20.
    Kurihara M, Berg D, Fischer J, Siebentritt S, Dale PJ (2009) Phys Status Solidi C 6:1241CrossRefGoogle Scholar
  21. 21.
    Pawar SM, Pawar BS, Moholkar AV, Choi DS, Yun HJ, Moon JH, Kolekar SS, Kim JH (2010) Electrochim Acta 55:4057CrossRefGoogle Scholar
  22. 22.
    Araki H, Kubo Y, Jimbo K, Maw WS, Katagiri H, Yamazaki M, Oishi K, Takeuchi A (2009) Phys Status Solidi C 6:1266CrossRefGoogle Scholar
  23. 23.
    Moriya K, Watabe J, Tanaka K, Uchiki H (2006) Phys Status Solidi C 3:2848CrossRefGoogle Scholar
  24. 24.
    Tanaka K, Oonuki M, Moritake N, Uchiki H (2009) Sol Energy Mater Sol Cells 93:583CrossRefGoogle Scholar
  25. 25.
    Yeh MY, Lee CC, Wuu DS (2009) J Sol Gel Sci Technol 52:65CrossRefGoogle Scholar
  26. 26.
    Fischereder A, Rath T, Haas W, Amenitsch H, Albering J, Meischler D, Larissegger S, Edler M, Saf R, Hofer F, Trimmel G (2010) Chem Mater 22:3399CrossRefGoogle Scholar
  27. 27.
    Prabhakar T, Jampana N (2011) Sol Energy Mater Sol Cells 95:1001CrossRefGoogle Scholar
  28. 28.
    Rajeshmon VG, Kartha CS, Vijayakumar KP, Sanjeeviraja C, Abe T, Kashiwaba Y (2011) Sol Energy 85:249CrossRefGoogle Scholar
  29. 29.
    Yoo H, Kim J (2011) Sol Energy Mater Sol Cells 95:239CrossRefGoogle Scholar
  30. 30.
    Madarász J, Bombicz P, Okuya M, Kaneko S (2001) Solid State Ionics 141–142:439CrossRefGoogle Scholar
  31. 31.
    Kumar YBK, Bhaskar PU, Babu GS, Raja VS (2010) Phys Status Solidi A 207:149CrossRefGoogle Scholar
  32. 32.
    Guo Q, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) J Am Chem Soc 132:17384CrossRefGoogle Scholar
  33. 33.
    Guo Q, Hillhouse HW, Agrawal R (2009) J Am Chem Soc 131:11672CrossRefGoogle Scholar
  34. 34.
    Steinhagen C, Panthani MG, Akhavan V, Goodfellow B, Koo B, Korgel BA (2009) J Am Chem Soc 131:12554CrossRefGoogle Scholar
  35. 35.
    Timmo K, Altosaar M, Raudoja J, Muska K, Pilvet M, Kauk M, Varema T, Danilson M, Volobujeva O, Mellikov E (2010) Sol Energy Mater Sol Cells 94:1889CrossRefGoogle Scholar
  36. 36.
    Mellikov E, Meissner D, Altosaar M, Kauk M, Krustok J, Öpik A, Volobujeva O, Iljina J, Timmo K, Klavina I, Raudoja J, Grossberg M, Varema T, Muska K, Ganchev M, Bereznev S, Danilson M (2011) Adv Mater Res 222:8CrossRefGoogle Scholar
  37. 37.
    Mellikov E, Meissner D, Varema T, Altosaar M, Kauk M, Volobujeva O, Raudoja J, Timmo K, Danilson M (2009) Sol Energy Mater Sol Cells 93:65CrossRefGoogle Scholar
  38. 38.
    Pradhan N, Katz B, Efrima S (2003) J Phys Chem 107:13843Google Scholar
  39. 39.
    Castro JR, Molloy KC, Liu Y, Lai CS, Dong Z, White TJ, Tiekink ERT (2008) J Mater Chem 18:5399CrossRefGoogle Scholar
  40. 40.
    Dutta DP, Sharma G (2006) Mater Lett 60:2395CrossRefGoogle Scholar
  41. 41.
    Liu Y, Ge M, Yue Y, Sun Y, Wu Y, Chen X, Dai N (2011) Phys Status Solidi RRL 5:113CrossRefGoogle Scholar
  42. 42.
    Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nano Lett 10:1253CrossRefGoogle Scholar
  43. 43.
    Rath T, Edler M, Haas W, Fischereder A, Moscher S, Schenk A, Trattnig R, Sezen M, Mauthner G, Pein A, Meischler D, Bartl K, Saf R, Bansal N, Haque SA, Hofer F, List EJW, Trimmel G (2011) Adv Energy Mater 1:1046CrossRefGoogle Scholar
  44. 44.
    Arar M, Pein A, Haas W, Hofer F, Norrman K, Krebs FC, Rath T, Trimmel G (2012) J Phys Chem C 116:19191CrossRefGoogle Scholar
  45. 45.
    Edler M, Rath T, Schenk A, Fischereder A, Haas W, Edler M, Chernev B, Kunert B, Hofer F, Resel R, Trimmel G (2012) Mater Chem Phys 136:582CrossRefGoogle Scholar
  46. 46.
    Barreca D, Tondello E, Lydon D, Spalding TR, Fabrizio M (2003) Chem Vap Deposition 9:93CrossRefGoogle Scholar
  47. 47.
    Nair PS, Radhakrishnan T, Revaprasadu N, Kolawole G, O′Brien P (2002) J Mater Chem 12:2722CrossRefGoogle Scholar
  48. 48.
    Barreca D, Gasparotto A, Maragno C, Seraglia R, Tondello E, Venzo A, Krishnan V, Bertagnolli H (2005) Appl Organomet Chem 19:59CrossRefGoogle Scholar
  49. 49.
    Xu K, Ding W (2008) Mater Lett 62:4437CrossRefGoogle Scholar
  50. 50.
    Whitmore WF, Lieber E (1935) Ind Eng Chem 127Google Scholar
  51. 51.
    González-Roura A, Casas J, Llebaria A (2002) Lipids 37:401CrossRefGoogle Scholar
  52. 52.
    Yordanov N, Gancheva V, Mladenova B, Grampp G (2003) Inorg Chem Commun 6:54CrossRefGoogle Scholar
  53. 53.
    Gable RW, Raston CL, Rowbottom GL, White AH, Winter G (1981) Dalton Trans 1392Google Scholar
  54. 54.
    Raston C, Tennant P, White A, Winter G (1978) Aust J Chem 31:1493CrossRefGoogle Scholar
  55. 55.
    Casey A, Vecchio M (1987) Inorg Chim Acta 131:191CrossRefGoogle Scholar
  56. 56.
    Barone G, Chaplin T, Hibbert TG, Kana AT, Mahon MF, Molloy KC, Worsley ID, Parkin IP, Price LS (2002) Dalton Trans 1085Google Scholar
  57. 57.
    Weber A, Mainz R, Unold T, Schorr S, Schock HW (2009) Phys Status Solidi C 6:1245CrossRefGoogle Scholar
  58. 58.
    Hu H, Liu Z, Yang B, Chen X, Qian Y (2005) J Cryst Growth 284:226CrossRefGoogle Scholar
  59. 59.
    Di Benedetto F, Borrini D, Caneschi A, Fornaciai G, Innocenti M, Lavacchi A, Massa CA, Montegrossi G, Oberhauser W, Pardi LA, Romanelli M (2011) Phys Chem Miner 38:483CrossRefGoogle Scholar
  60. 60.
    Fernandes PA, Salomé PMP, da Cunha AF (2011) J Alloys Compd 509:7600CrossRefGoogle Scholar
  61. 61.
    Ge J, Wu Y, Zhang C, Zuo S, Jiang J, Ma J, Yang P, Chu J (2012) Appl Surf Sci 258:7250CrossRefGoogle Scholar
  62. 62.
    Cliff G, Lorimer GW (1975) J Microsc 103:203CrossRefGoogle Scholar
  63. 63.
    Platzer-Björkman C, Scragg JJ, Flammersberger H, Kubart T, Edoff M (2011) Sol Energy Mater Sol Cells 98:110Google Scholar
  64. 64.
    Taunier S, Sicx-Kurdi J, Grand P, Chomont A, Ramdani O, Parissi L, Panheleux P, Naghavi N, Hubert C, Benfarah M (2005) Thin Solid Films 480–481:526CrossRefGoogle Scholar
  65. 65.
    Kemell M, Ritala M, Leskelä M (2005) Crit Rev Solid State Mater Sci 30:1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Achim Fischereder
    • 1
    • 2
  • Alexander Schenk
    • 1
    • 2
    • 3
  • Thomas Rath
    • 1
    • 2
    Email author
  • Wernfried Haas
    • 2
    • 4
  • Sébastien Delbos
    • 5
    • 6
    • 7
  • Corentin Gougaud
    • 5
    • 6
    • 7
  • Negar Naghavi
    • 5
    • 6
    • 7
  • Angelika Pateter
    • 1
    • 2
  • Robert Saf
    • 1
  • Dorith Schenk
    • 1
  • Michael Edler
    • 1
    • 2
  • Kathrin Bohnemann
    • 1
    • 3
  • Angelika Reichmann
    • 4
  • Boril Chernev
    • 4
  • Ferdinand Hofer
    • 4
  • Gregor Trimmel
    • 1
    • 2
    Email author
  1. 1.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria
  2. 2.Christian Doppler Laboratory for Nanocomposite Solar CellsGraz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbHGrazAustria
  3. 3.Polymer Competence Center Leoben GmbHLeobenAustria
  4. 4.Institute for Electron Microscopy and Fine Structure ResearchGraz University of Technology and Graz Centre for Electron MicroscopyGrazAustria
  5. 5.EDF R&D, Institut de Recherche et Développement sur l’Energie Photovoltaïque (IRDEP)ChatouFrance
  6. 6.CNRSChatouFrance
  7. 7.Chimie ParisTechParisFrance

Personalised recommendations