Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 144, Issue 1, pp 73–82 | Cite as

Compensation effects at electron traps in semiconductors

  • O. EngstromEmail author
Original Paper

Abstract

The basic qualities for fulfilling the Meyer–Neldel rule (MNR) for thermal electron emission from semiconductor traps are investigated. A trap model including vibronic properties is used with varying entropy arising from the change in elasticity of the ionic part of the trap potential when an electron transition takes place. This gives rise to a system where the compensation effect originates from the increasing entropy change as a function of the enthalpy supply needed for the transition process in concord with Yelon–Movaghar theory. The entropy increase connects to a decrease in the activation energy for electron capture, which amplifies the compensation effect for MNR manifestation. By comparing with experimental data, the result achieved from the model clarifies the experimental observation of class partitioning for centers in GaAs, obeying the MNR. Furthermore, it is demonstrated that traps at metal–oxide–silicon interfaces, with the same properties as bulk traps following the MNR, give rise to capture cross-sections steeply increasing with the Gibbs free energy involved in carrier emission, as found by experiment.

Graphical Abstract

Keywords

Meyer–Neldel rule Isokinetic Semiconductor traps MOS interface states Vibronic states 

References

  1. 1.
    Milne AG (1973) Deep impurities in semiconductors. Wiley, New YorkGoogle Scholar
  2. 2.
    Stoneham AM (1975) Theory of defects in solids. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Landsberg PT (1991) Recombination in semiconductors. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Sah CT, Forbes L, Rosier I, Tasch Jr AF (1970) Solid State Electron 13:759Google Scholar
  5. 5.
    Grimmeiss HG, Kleverman M (1992) Adv Mater 4:261CrossRefGoogle Scholar
  6. 6.
    Haug A (1972) Festkörperprobleme XII:411Google Scholar
  7. 7.
    Henry CH, Lang DV (1977) Phys Rev B 15:989CrossRefGoogle Scholar
  8. 8.
    Huang K, Rhys A (1950) Proc R Soc A 204:406CrossRefGoogle Scholar
  9. 9.
    Shockley W, Read WT (1952) Phys Rev 87:835CrossRefGoogle Scholar
  10. 10.
    Engstrom O, Alm A (1978) Solid State Electron 21:1571CrossRefGoogle Scholar
  11. 11.
    Engstrom O, Alm A (1983) J Appl Phys 54:5240CrossRefGoogle Scholar
  12. 12.
    Johnston SW, Crandal RS, Yelon A (2003) Appl Phys Lett 83:908CrossRefGoogle Scholar
  13. 13.
    Meyer W, Neldel H (1937) Z Tech Phys 12:588Google Scholar
  14. 14.
    Engstrom O, Kaniewska M (2005) Mater Sci Eng B 138:12CrossRefGoogle Scholar
  15. 15.
    Yelon A, Movaghar B (1990) Phys Rev Lett 65:618CrossRefGoogle Scholar
  16. 16.
    Engstrom O, Grimmeiss HG (1989) Semicond Sci Tech 4:961CrossRefGoogle Scholar
  17. 17.
    Dexter DL (1958) In: Sietz F, Turnbull D (eds) Solid state physics, vol 6. Academic, New York, p 353Google Scholar
  18. 18.
    Condon EU (1928) Phys Rev 32:858CrossRefGoogle Scholar
  19. 19.
    Landsberg PT, Engstrom O (1992) Handbook of Semiconductors, vol 1. Elsevier, Amsterdam, p 197Google Scholar
  20. 20.
    Lloyd P, O’Dwyer JJ (1963) Mol Phys 6:573CrossRefGoogle Scholar
  21. 21.
    Piscator J, Raeissi B, Engstrom O (2009) J Appl Phys 106:054510CrossRefGoogle Scholar
  22. 22.
    Eyring H (1935) Chem Rev 17:65CrossRefGoogle Scholar
  23. 23.
    VanVechten JA, Thurmond CD (1976) Phys Rev B 14:3539CrossRefGoogle Scholar
  24. 24.
    Heine V, Van Vechten JA (1976) Phys Rev B 13:1622CrossRefGoogle Scholar
  25. 25.
    Kirton MJ, Uren MJ (1986) Appl Phys Lett 48:1270CrossRefGoogle Scholar
  26. 26.
    Yelon A, Movaghar B, Crandall RS (2006) Rep Prog Phys 69:1145CrossRefGoogle Scholar
  27. 27.
    Ricksand A, Engstrom O (1991) J Appl Phys 70:6915CrossRefGoogle Scholar
  28. 28.
    Deuling H, Klausmann E, Goetzberger A (1972) Solid State Electron 15:559CrossRefGoogle Scholar
  29. 29.
    Morita M, Tsuboutchi K, Mikoshiba N (1978) Appl Phys Lett 33:745CrossRefGoogle Scholar
  30. 30.
    Fahrner W, Goetzberger A (1970) Appl Phys Lett 17:16CrossRefGoogle Scholar
  31. 31.
    Engstrom O, Gutt T, Przewlocki HM (2007) J Telecommun Inf Tech 2:86Google Scholar
  32. 32.
    Raeissi B, Piscator J, Engstrom O, Hall S, Buiu O, Lemme MC, Gottlob HDB, Hurley PK, Charkauoi K, Osten HJ (2008) Solid State Electron 52:1274CrossRefGoogle Scholar
  33. 33.
    Engstrom O, Raeissi B, Piscator J (2008) J Appl Phys 103:104101CrossRefGoogle Scholar
  34. 34.
    Fedorenko YG, Truong L, Afanasev VV, Stesmans A, Zhang Z, Campbell AA (2005) J Appl Phys 98:123703CrossRefGoogle Scholar
  35. 35.
    Hurley PK, Cherkaoui K, O’Connor E, Lemme MC, Gottlob HDB, Schmidt M, Hall S, Lu Y, Buiu O, Raeissi B, Piscator J, Engstrom O, Newcomb SB (2008) J Electrochem Soc 155:G13CrossRefGoogle Scholar
  36. 36.
    Engstrom O, Mitrovic IZ, Hall S (2012) Solid State Electron 75:63CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Chalmers University of Technology, Microtechnology and NanoscienceGothenburgSweden

Personalised recommendations