Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 143, Issue 11, pp 1479–1486 | Cite as

Reactivity of diorganotin(IV) dichlorides towards N, P, and O donor ligands: crystal structure of [SnMe2Cl2(phendione)]

  • B. Z. MomeniEmail author
  • R. Kia
  • S. Ghanbarzadeh
Original Paper

Abstract

The reactions of diorganotin(IV) dichlorides SnR2Cl2 (R = Me, n-Bu) with a series of ligands having N, P, or O donor atoms have been investigated. The reaction of SnR2Cl2 (R = Me, n-Bu) with the bidentate chelating pyridyl ligands of phendione (1,10-phenanthroline-5,6-dione) and ndppz (11-nitrodipyrido[3,2-a:2′,3′-c]phenazine) affords new hexa-coordinated 1:1 adducts with general formula SnR2Cl2L (R = Me, n-Bu; L = phendione, ndppz). On the other hand, SnMe2Cl2 reacted with xantphos [9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene] to yield the hexa-coordinated 1:2 adduct [SnMe2Cl2(xantphos)2] in the solid state. However, it dissociates in solution to give the penta-coordinated 1:1 complex [SnMe2Cl2(xantphos)]. Notably, the analogous n-Bu derivative does not react, even under forcing conditions. Finally, the tin(IV) compounds SnR2Cl2 (R = Me, n-Bu) react with dppap [2-(diphenylphosphinoamino)pyridine] to give the penta-coordinated 1:1 adducts [SnR2Cl2(dppap)] (R = Me, n-Bu). The resulting complexes have been characterized by nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. The X-ray crystal structure determination of [SnMe2Cl2(phendione)] reveals that the compound crystallized with two independent molecules in the asymmetric unit with a trans-[SnMe2] configuration.

Graphical Abstract

Keywords

Organotin Coordination Pyridyl NMR Crystal structure 

Notes

Acknowledgments

We thank the Science Research Council of K.N. Toosi University of Technology for financial support.

References

  1. 1.
    Davies NA, Dillon KB, Harris RK, Hewitson GF, Toms L (1994) Polyhedron 13:19CrossRefGoogle Scholar
  2. 2.
    Momeni BZ, Shahbazi S, Khavasi HR (2010) Polyhedron 29:1393CrossRefGoogle Scholar
  3. 3.
    Momeni BZ, Rominger F, Hosseini SS (2009) Acta Crystallogr Sect E 65:m690CrossRefGoogle Scholar
  4. 4.
    Buntine MA, Hall VJ, Kosovel FJ, Tiekink ERT (1998) J Phys Chem A 102:2472CrossRefGoogle Scholar
  5. 5.
    Crowe AJ, Smith PJ, Atassi G (1984) Inorg Chim Acta 93:179CrossRefGoogle Scholar
  6. 6.
    Crowe AJ, Smith PJ, Cardin CJ, Parge HE, Smith FE (1984) Cancer Lett 24:45CrossRefGoogle Scholar
  7. 7.
    Van Den Berghe E, Van Der Kelen GP (1968) J Organomet Chem 11:479CrossRefGoogle Scholar
  8. 8.
    Yoder CH, Mokrynka D, Coley SM, Otter JC, Haines RE, Grushow A, Ansel LJ, Hovick JW, Mikus J, Shermak MA, Spencer JN (1987) Organometallics 6:1679CrossRefGoogle Scholar
  9. 9.
    Lo KM, Das VGK, Ng SW (1999) Acta Crystallogr Sect C 55:1058CrossRefGoogle Scholar
  10. 10.
    Cunningham D, Landers EM, McArdle P, Chonchubhair NN (2000) J Organomet Chem 612:53CrossRefGoogle Scholar
  11. 11.
    Pettinari C, Pellei M, Marchetti F, Santini C, Miliani M (1998) Polyhedron 17:561CrossRefGoogle Scholar
  12. 12.
    Calderazzo F, Marchetti F, Pampaloni G, Passarelli V (1999) J Chem Soc Dalton Trans 4389Google Scholar
  13. 13.
    Garoufis A, Koutsodimou A, Raptopoulou CP, Simopoulos A, Katsaros N (1999) Polyhedron 18:3005CrossRefGoogle Scholar
  14. 14.
    Casella G, Ferrante F, Saielli G (2008) Inorg Chem 47:4796CrossRefGoogle Scholar
  15. 15.
    Lockhart TP, Manders WF (1986) Inorg Chem 25:892CrossRefGoogle Scholar
  16. 16.
    Holeček J, Nádvorník M, Handlíř K, Lyčka A (1986) J Organomet Chem 315:299CrossRefGoogle Scholar
  17. 17.
    McGrady MM, Tobias RS (1965) J Am Chem Soc 87:1909CrossRefGoogle Scholar
  18. 18.
    Bardi R, Piazzesi A, Ettorre R, Plazzogna G (1984) J Organomet Chem 270:171CrossRefGoogle Scholar
  19. 19.
    Hillebrand S, Bruckmann J, Krüger C, Haenel MW (1995) Tetrahedron Lett 36:75CrossRefGoogle Scholar
  20. 20.
    Aucott SM, Slawin AMZ, Woollins JD (2000) J Chem Soc Dalton Trans 2559Google Scholar
  21. 21.
    Aucott SM, Slawin AMZ, Woollins JD (1997) Phosphorus. Sulfur Silicon Relat Elem 124:473Google Scholar
  22. 22.
    Ainscough EW, Peterson LK (1970) Inorg Chem 9:2699CrossRefGoogle Scholar
  23. 23.
    Pettinari C, Marchetti F, Cingolani A, Pettinari R, Drozdov A, Troyanov S (2001) Inorg Chim Acta 312:125CrossRefGoogle Scholar
  24. 24.
    Yoder CH, Otter JC, Grushow A, Ganunis TF, Enders BG, Zafar AI, Spencer JN (1990) J Organomet Chem 385:33CrossRefGoogle Scholar
  25. 25.
    Das VGK, Chee-Keong Y, Smith PJ (1987) J Organomet Chem 327:311CrossRefGoogle Scholar
  26. 26.
    Crowe AJ, Smith PJ (1982) J Organomet Chem 224:223CrossRefGoogle Scholar
  27. 27.
    de Alencastro RB, Bomfim JAS, Filgueiras CAL, Howie RA, Wardell JL (2005) Appl Organomet Chem 19:479CrossRefGoogle Scholar
  28. 28.
    Choi C-S, Mutai T, Arita S, Araki K (2000) J Chem Soc Perkin Trans 2:243Google Scholar
  29. 29.
    Stoe F, Cie X (2009) X-AREA: program for the acquisition and analysis of data, V 1.52. Stoe & Cie GmbH, DarmstadtGoogle Scholar
  30. 30.
    Blessing RH (1995) Acta Crystallogr Sect A 51:33CrossRefGoogle Scholar
  31. 31.
    Sheldrick GK (2008) Acta Crystallogr Sect A 64:112CrossRefGoogle Scholar
  32. 32.
    Spek AL (2009) Acta Crystallogr Sect D 65:148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of ChemistryK.N. Toosi University of TechnologyTehranIran
  2. 2.X-ray Crystallography Lab, Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations