Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 143, Issue 5, pp 717–722 | Cite as

Correlation of surface roughness and surface energy of silicon-based materials with their priming reactivity

  • Thomas Bodner
  • Andreas Behrendt
  • Emil Prax
  • Frank Wiesbrock
Original Paper

Abstract

In this work, the effect of surface roughness and cleaning procedures on reactivity during priming with hexamethyldisilazane is described for four silicon substrates frequently used in semiconductor technology, namely thermally grown SiO2, argon implanted tetraorthosilicate SiO2, polysilicon, and amorphous silicon. Surface energy and roughness were determined by static contact angle measurements and atomic force microscopy. The surface roughness of the silicon substrates increased in the order: thermally grown SiO2, argon implanted tetraorthosilicate SiO2, polysilicon, and amorphous silicon. It was found not to be substantially affected by standard cleaning procedures. The surface energy of all silicon samples decreased with increasing hexamethyldisilazane vapor exposure at 90 °C, and the extent of the decrease corresponded to the surface roughness. Furthermore, a promoting effect on the silylation reaction by an argon implantation process was determined. A correlation between the surface morphology of different silicon materials and reactivity in the silylation reaction with hexamethyldisilazane could be established.

Graphical abstract

Keywords

Silicon compounds Surface Structure–activity relationships HMDS priming Atomic force microscopy 

Notes

Acknowledgments

This study was performed at the Institute for Chemistry and Technology of Materials (ICTM) at the Graz University of Technology and at Infineon Technologies Austria AG Villach with funding and contributions from the Polymer Competence Center Leoben GmbH (PCCL, Austria) within the framework of the COMET-program of the Austrian Ministry of Traffic, Innovation and the Ministry of Economy, Family and Youth. PCCL is funded by the Austrian Government and the State Governments of Styria and Upper Austria.

Supplementary material

706_2012_730_MOESM1_ESM.doc (378 kb)
Supplementary material 1 (DOC 377 kb)

References

  1. 1.
    Schneiderman R (2011) IEEE Signal Process Mag 28:8CrossRefGoogle Scholar
  2. 2.
    Franssila S (2004) Introduction to microfabrication. Wiley, ChichesterGoogle Scholar
  3. 3.
    Li N, Ho C-M (2008) Lab Chip 8:2105CrossRefGoogle Scholar
  4. 4.
    Sackmann E, Tanaka M (2000) Trends Biotechnol 18:58CrossRefGoogle Scholar
  5. 5.
    Rehfeldt F, Tanaka M, Pagnoni L, Jordan R (2002) Langmuir 18:4908CrossRefGoogle Scholar
  6. 6.
    Schultz J, Nardin M (2003) Theories and mechanisms of adhesion. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology, 2nd edn. Marcel Dekker Inc, New YorkGoogle Scholar
  7. 7.
    Blossey R (2003) Nat Mater 2:301CrossRefGoogle Scholar
  8. 8.
    Khanna VK (2011) J Phys D Appl Phys 44:034004CrossRefGoogle Scholar
  9. 9.
    Petersson L, Meier P, Kornmann X, Hillborg H (2011) J Phys D Appl Phys 44:034011CrossRefGoogle Scholar
  10. 10.
    Lampin M, Warocquier-Clerout R, Legris C, Degrange M, Sigot-Luizard MF (1997) J Biomed Mater Res Part A 36:99CrossRefGoogle Scholar
  11. 11.
    Kern W (2008) Evolution of wafer cleaning science and technology. In: Kern W, Reinhardt KA (eds) Handbook of semiconductor wafer cleaning technology, 2nd edn. William Andrew Inc, Norwich, p 47Google Scholar
  12. 12.
    Kern W, Puotinen DA (1970) RCA Rev 31:187Google Scholar
  13. 13.
    Sato M, Kawai A (2006) J Photopolym Sci Tec 19:601CrossRefGoogle Scholar
  14. 14.
    Ponjeé JJ, Mariott VB, Michielsen MCBA, Touwslager FJ, van Velzen PNT, van der Wel H (1990) J Vac Sci Technol B 8:463CrossRefGoogle Scholar
  15. 15.
    Bauer J, Drescher G, Illig M (1996) J Vac Sci Technol B 14:2485CrossRefGoogle Scholar
  16. 16.
    Larsson MP, Ahmad MM (2006) J Micromech Microeng 16:161CrossRefGoogle Scholar
  17. 17.
    Hertl W, Hair ML (1971) J Phys Chem 75:2181CrossRefGoogle Scholar
  18. 18.
    Gun’ko VM, Vedamuthu MS, Henderson GL, Blitz JP (2000) J Colloid Interface Sci 228:157CrossRefGoogle Scholar
  19. 19.
    Hwang K-Y, Park C-S, Kim J-H, Suh K-Y, Cho E-C, Huh N (2010) J Micromech Microeng 20:117001CrossRefGoogle Scholar
  20. 20.
    Helbert JN, Saha NC (1984) Importance of the interface condition upon photoresist image adhesion in microelectronic device fabrication. In: Bowden MJ, Turner SR (eds) Polymers for high technology electronics and photonics. ACS Symposium Series, Washington DCGoogle Scholar
  21. 21.
    Hair ML, Hertl W (1973) J Phys Chem 75:1965CrossRefGoogle Scholar
  22. 22.
    Samitsu Y (1993) Nanotechnology 4:236CrossRefGoogle Scholar
  23. 23.
    Busscher HJ, van Pelt AWJ, de Boer P, de Jong HP, Arends J (1984) Colloids Surf 9:319CrossRefGoogle Scholar
  24. 24.
    Vesel A, Junkar I, Cvelbar U, Kovac J, Mozetic M (2008) Surf Interface Anal 40:1444CrossRefGoogle Scholar
  25. 25.
    Chasse M, Ross GG (2002) J Appl Phys 92:5872CrossRefGoogle Scholar
  26. 26.
    Feng B, Weng J, Yang BC, Qu SX, Zhang XD (2003) Biomaterials 24:4663CrossRefGoogle Scholar
  27. 27.
    Ström G, Frederiksson M, Stenius P (1986) J Coll Interface Sci 119:352CrossRefGoogle Scholar
  28. 28.
    Leenaars AFM, Huethorst JAM, van Oekel JJ (1990) Langmuir 6:1701CrossRefGoogle Scholar
  29. 29.
    Widmann D, Mader H, Friedrich H (2000) Technology of integrated circuits. Springer, Heidelberg, p 247Google Scholar
  30. 30.
    Friedbacher G, Fuchs H (2003) Angew Chem 115:5804CrossRefGoogle Scholar
  31. 31.
    Lee JP, Jang YJ, Sung MM (2003) Adv Funct Mater 13:873CrossRefGoogle Scholar
  32. 32.
    Yang SY, Shin K, Park CE (2005) Adv Funct Mater 15:1806CrossRefGoogle Scholar
  33. 33.
    Cho K, Kim D, Yoon S (2003) Macromolecules 36:7652CrossRefGoogle Scholar
  34. 34.
    Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741CrossRefGoogle Scholar
  35. 35.
    Rabel W (1971) Farbe Lack 77:997Google Scholar
  36. 36.
    Kaelble DH (1970) J Adhes 2:66CrossRefGoogle Scholar
  37. 37.
    Lau WS (1999) Infrared characterization for microelectronics. World Scientific, Singapore, p 25CrossRefGoogle Scholar
  38. 38.
    Barr TL, Seal S (1995) J Vac Sci Technol A 13:1239CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Thomas Bodner
    • 1
  • Andreas Behrendt
    • 2
  • Emil Prax
    • 2
  • Frank Wiesbrock
    • 3
  1. 1.Polymer Competence Center Leoben GmbH PCCLLeobenAustria
  2. 2.Infineon Technologies Austria AGVillachAustria
  3. 3.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria

Personalised recommendations