Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 143, Issue 4, pp 535–543 | Cite as

Prediction of improved antimicrobial mastoparan derivatives by 3D-QSAR-CoMSIA/CoMFA and computational mutagenesis

  • Speranta Avram
  • Dan Mihailescu
  • Florin Borcan
  • Adina-Luminita MilacEmail author
Original Paper

Abstract

Antimicrobial peptides are an important class of therapeutic agents used against a wide range of pathogens such as gram-negative and -positive bacteria, fungi, and viruses. The minimal inhibitory concentration at the level of the pathogen membrane is a major determinant of the pharmacokinetic behavior and, consequently, it can affect their antimicrobial activity. Here we generated quantitative structure-activity relationship models (3D-QSAR—comparative molecular field analysis/comparative molecular similarity indices analysis) using a database of 33 mastoparan analogs, antimicrobial peptides with known experimental activity, and further used these models to predict the minimal inhibitory concentration for 18 new mastoparan analogs, obtained by computational mutagenesis. We discuss two options for structural alignment of mastoparan analogs: superposition of Cα trace atoms or superposition of all backbone atoms. Significant values of the cross-validated correlation q 2 (higher than 0.60) and the fitted correlation r 2 (higher than 0.90) of our models indicate that they are reliable enough for activity prediction in the case of new derivatives. This allows us to identify compounds with possibly enhanced antimicrobial activity against Bacillus subtilis, which are suggested for further experimental studies.

Graphical Abstract

Keywords

Mastoparan analogs Drug research Peptides QSAR Computational mutagenesis 

Notes

Acknowledgments

We acknowledge the financial support of CNMP PNII 61-016/2007, CNMP PNII 62-061/2008, and PNII PD-586/2010. A.-L. Milac was supported by the Romanian Academy project 3 of the Institute of Biochemistry of the Romanian Academy. A.-L. Milac acknowledges the postdoctoral program POSDRU/89/1.5/S/60746 from the European Social Fund.

References

  1. 1.
    Hilpert K, Elliott MR, Volkmer-Engert R, Henklein P, Donini O, Zhou Q, Winkler DF, Hancock RE (2006) Chem Biol 13:1101CrossRefGoogle Scholar
  2. 2.
    Rodriguez CH, De Ambrosio A, Bajuk M, Spinozzi M, Nastro M, Bombicino K, Radice M, Gutkind G, Vay C, Famiglietti A (2010) J Infect Dev Countries 4:164Google Scholar
  3. 3.
    Bals R, Hubert D, Tummler B (2011) J Cystic Fibrosis 10(Suppl 2):S146CrossRefGoogle Scholar
  4. 4.
    Opatowski L, Guillemot D, Boelle PY, Temime L (2011) Curr Opin Infect Dis 24:279CrossRefGoogle Scholar
  5. 5.
    Zhu WL, Song YM, Park Y, Park KH, Yang ST, Kim JI, Park IS, Hahm KS, Shin SY (2007) Biochim Biophys Acta 1768:1506CrossRefGoogle Scholar
  6. 6.
    Zasloff M (2002) Nature 415:389CrossRefGoogle Scholar
  7. 7.
    Zanetti M, Gennaro R, Skerlavaj B, Tomasinsig L, Circo R (2002) Curr Pharm Design 8:779CrossRefGoogle Scholar
  8. 8.
    Kolar SS, McDermott AM (2011) Cell Mol Life Sci 68:2201CrossRefGoogle Scholar
  9. 9.
    Bernard JJ, Gallo RL (2011) Cell Mol Life Sci 68:2189CrossRefGoogle Scholar
  10. 10.
    Maher S, McClean S (2006) Biochem Pharmacol 71:1289CrossRefGoogle Scholar
  11. 11.
    Rosenfeld Y, Lev N, Shai Y (2010) Biochemistry 49:853CrossRefGoogle Scholar
  12. 12.
    Harris F, Dennison SR, Phoenix DA (2009) Curr Protein Pept Sci 10:585CrossRefGoogle Scholar
  13. 13.
    Hancock RE, Rozek A (2002) FEMS Microbiol Lett 206:143CrossRefGoogle Scholar
  14. 14.
    Jin Y, Hammer J, Pate M, Zhang Y, Zhu F, Zmuda E, Blazyk J (2005) Antimicrob Agents Chemother 49:4957CrossRefGoogle Scholar
  15. 15.
    Mahalka AK, Kinnunen PK (2009) Biochim Biophys Acta 1788:1600CrossRefGoogle Scholar
  16. 16.
    Leptihn S, Har JY, Wohland T, Ding JL (2010) Biochemistry 49:9161CrossRefGoogle Scholar
  17. 17.
    Yin F, Kindt JT (2010) J Phys Chem B 114:8076CrossRefGoogle Scholar
  18. 18.
    Cruciani RA, Barker JL, Zasloff M, Chen HC, Colamonici O (1991) Proc Natl Acad Sci USA 88:3792CrossRefGoogle Scholar
  19. 19.
    Mally M, Majhenc J, Svetina S, Zeks B (2007) Biochim Biophys Acta 1768:1179CrossRefGoogle Scholar
  20. 20.
    Dempsey CE, Hawrani A, Howe RA, Walsh TR (2010) Protein Pept Lett 17:1334Google Scholar
  21. 21.
    Nan YH, Bang JK, Shin SY (2009) Peptides 30:832CrossRefGoogle Scholar
  22. 22.
    Cerovsky V, Slaninova J, Fucik V, Hulacova H, Borovickova L, Jezek R, Bednarova L (2008) Peptides 29:992CrossRefGoogle Scholar
  23. 23.
    Cerovsky V, Pohl J, Yang Z, Alam N, Attygalle AB (2007) J Pept Sci 13:445CrossRefGoogle Scholar
  24. 24.
    dos Santos Cabrera MP, Costa ST, de Souza BM, Palma MS, Ruggiero JR, Ruggiero Neto J (2008) Eur Biophys J 37:879Google Scholar
  25. 25.
    Cabrera MP, Alvares DS, Leite NB, de Souza BM, Palma MS, Riske KA, Neto JR (2011) Amino Acids 40:77CrossRefGoogle Scholar
  26. 26.
    Leite NB, da Costa LC, dos Santos Alvares D, dos Santos Cabrera MP, de Souza BM, Palma MS, Neto JR (2011) Amino Acids 40:91Google Scholar
  27. 27.
    Mikut R (2010) Methods Mol Biol 618:287CrossRefGoogle Scholar
  28. 28.
    Tong J, Liu S, Zhou P, Wu B, Li Z (2008) J Theor Biol 253:90CrossRefGoogle Scholar
  29. 29.
    Jenssen H, Fjell CD, Cherkasov A, Hancock RE (2008) J Pept Sci 14:110CrossRefGoogle Scholar
  30. 30.
    Collantes ER, Dunn WJ (1995) J Med Chem 38:2705CrossRefGoogle Scholar
  31. 31.
    Avram S, Duda-Seiman D, Borcan F, Radu B, Duda-Seiman C, Mihailescu D (2011) Int J Pept Res Ther 17:7CrossRefGoogle Scholar
  32. 32.
    Persson B (2000) EXS 88:215Google Scholar
  33. 33.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179CrossRefGoogle Scholar
  34. 34.
    Akamatsu M (2002) Curr Top Med Chem 2:1381CrossRefGoogle Scholar
  35. 35.
    Checler F, Alves da Costa C, Ayral E, Andrau D, Dumanchin C, Farzan M, Hernandez JF, Martinez J, Lefranc-Jullien S, Marambaud P, Pasini A, Petit A, Phiel C, Robert P, St. George-Hyslop P, Wilk S (2005) Curr Alzheimer Res 2:327Google Scholar
  36. 36.
    Sybyl 7 (2010) http://www.tripos.com; accessed 21 Oct 2011
  37. 37.
    Hayashi Y, Sakaguchi K, Kobayashi M, Kikuchi Y, Ichiishi E (2003) Bioinformatics 19:1514CrossRefGoogle Scholar
  38. 38.
    Oprea TI, Waller CL, Marshall GR (1994) J Med Chem 37:2206CrossRefGoogle Scholar
  39. 39.
    Cramer RD, Patterson DE, Bunce JD (1989) Prog Clin Biol Res 291:161Google Scholar
  40. 40.
    Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130CrossRefGoogle Scholar
  41. 41.
    Khedkar SA, Malde AK, Coutinho EC (2007) J Mol Model 13:1099CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Speranta Avram
    • 2
  • Dan Mihailescu
    • 2
  • Florin Borcan
    • 3
  • Adina-Luminita Milac
    • 1
    Email author
  1. 1.Institute of Biochemistry of the Romanian AcademyBucharestRomania
  2. 2.Faculty of Biology, Anatomy, Animal Physiology and Biophysics DepartmentUniversity of BucharestBucharestRomania
  3. 3.Pharmaceutical Chemistry Department, Faculty of Pharmacy“Victor Babes” University of Medicine and PharmacyTimisoaraRomania

Personalised recommendations