Monatshefte für Chemie - Chemical Monthly

, Volume 143, Issue 5, pp 729–738 | Cite as

Visible light-induced photocatalysis through surface plasmon excitation of platinum-metallized titania for photocatalytic bleaching of rhodamine B

  • Dongfang Zhang
Original Paper


Nanocomposites consisting of titania nanoparticles and metallic platinum were prepared via a soft chemical reduction method. The detailed structural, compositional, and optical characterization and physicochemical properties of the obtained products were analyzed by X-ray diffraction, nitrogen adsorption, Raman spectroscopy, UV–Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, and FT-IR spectroscopy techniques. Employing photodegradation of rhodamine B as the model reaction, we found that the as-prepared Pt/TiO2 nanocomposite showed an excellent photocatalytic oxidation activity under visible light irradiation. On the basis of these results, the intrinsic mechanism of visible light-induced photocatalytic oxidation of organic compounds on the platinized titania is proposed and discussed. The superior visible light-driven photocatalytic efficiency of the Pt/TiO2 nanocomposite photocatalyst can be ascribed to the high efficiency of charge-pair separation due to the presence of deposited Pt serving as electron sinks to retard the rapid e–h+ couple recombination; the good photoabsorption capacity in the visible light region; and the higher concentration of surface hydroxyl groups, which are able to effectively scavenge photogenerated valence band holes. Accumulation of the holes at the catalyst surface increases the probability of the formation of OH· as a reactive species that readily oxidizes the organic dye molecule.

Graphical abstract


Titania Rhodamine B Surface properties 



This work was supported by the Fundamental Research Funds for the Central Universities (prog no. 2009QC016).


  1. 1.
    Galidino C, Jacques P, Kalt T (2001) J Photochem Photobiol A Chem 141:47CrossRefGoogle Scholar
  2. 2.
    Zhang X, Liu Y, Yan K, Wu H (2007) J Biosci Bioeng 104:104CrossRefGoogle Scholar
  3. 3.
    Kim JS, Joo HK, Lee TK, Itoh K, Murabayashi M (2000) J Catal 194:484CrossRefGoogle Scholar
  4. 4.
    Rachel A, Sarakha M, Subrahmanyam M, Boule P (2002) Appl Catal B 37:293CrossRefGoogle Scholar
  5. 5.
    Wu JJ, Tseng CH (2006) Appl Catal B 66:51CrossRefGoogle Scholar
  6. 6.
    Fu PF, Zhang PY (2010) Appl Catal B 96:176CrossRefGoogle Scholar
  7. 7.
    Zhang DF, Zeng FB (2011) Russ J Phys Chem A 85:1077Google Scholar
  8. 8.
    Sa J, Fernandez-Garcia M, Anderson JA (2008) Catal Comm 9:1991CrossRefGoogle Scholar
  9. 9.
    Vorontsov AV, Stoyanova IV, Kozlov DV, Simagina VI, Savinov EN (2000) J Catal 189:360CrossRefGoogle Scholar
  10. 10.
    Linsebigler AL, Lu GQ, Yates JT (1995) Chem Rev 95:735CrossRefGoogle Scholar
  11. 11.
    Haick H, Paz Y (2003) J Phys Chem B 107:2319CrossRefGoogle Scholar
  12. 12.
    Lee J, Choi W (2005) J Phys Chem B 109:7399CrossRefGoogle Scholar
  13. 13.
    Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Appl Catal A 359:25CrossRefGoogle Scholar
  14. 14.
    Sclafani A, Herrmann JM (1996) J Phys Chem 100:13655CrossRefGoogle Scholar
  15. 15.
    Fox MA, Dulay MT (1992) Chem Rev 93:341CrossRefGoogle Scholar
  16. 16.
    Hadjiivanov K, Klissurski DG (1996) Chem Soc Rev 25:61CrossRefGoogle Scholar
  17. 17.
    Setiawati E, Kawano K (2008) J Alloy Compd 451:293CrossRefGoogle Scholar
  18. 18.
    Chen P, Zhang XG (2008) Clean 36:507Google Scholar
  19. 19.
    Liu S, Jaffrezic N, Guillard C (2008) Appl Surf Sci 255:2704CrossRefGoogle Scholar
  20. 20.
    Barzykin AV, Tachiya M (2002) J Phys Chem B 106:4356CrossRefGoogle Scholar
  21. 21.
    Li FB, Li XZ (2002) Chemosphere 48:1103CrossRefGoogle Scholar
  22. 22.
    Kozlova EA, Korobkina TP, Vorontsov AV, Parmon VN (2009) Appl Catal A 367:130CrossRefGoogle Scholar
  23. 23.
    Burdett JK, Hughbanks T, Miller GJ, Richardson JW Jr, Smith JV (1987) J Am Chem Soc 109:3639CrossRefGoogle Scholar
  24. 24.
    Iida Y, Furukawa M, Aoki T, Sakai T (1998) Appl Spectrosc 52:673CrossRefGoogle Scholar
  25. 25.
    Xu CY, Zhang PX, Yan L (2001) J Raman Spectrosc 32:862CrossRefGoogle Scholar
  26. 26.
    Ohsaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7:321CrossRefGoogle Scholar
  27. 27.
    Ohsaka T (1980) J Phys Soc Jpn 48:1661CrossRefGoogle Scholar
  28. 28.
    Balaji S, Djaoued Y, Robichaud J (2006) J Raman Spectrosc 37:1416CrossRefGoogle Scholar
  29. 29.
    Zhang J, Li M, Feng Z, Chen J, Li C (2006) J Phys Chem B 110:927CrossRefGoogle Scholar
  30. 30.
    Parker JC, Siegel RW (1990) Appl Phys Lett 57:943CrossRefGoogle Scholar
  31. 31.
    Subramanian V, Wolf EE, Kamat PV (2003) Langmuir 19:469CrossRefGoogle Scholar
  32. 32.
    Marcus MA, Andrews MP, Zegenhagen J, Bommannavar AS, Montano P (1983) Phys Rev B 42:3312CrossRefGoogle Scholar
  33. 33.
    Lottici PP, Bersani D (1998) Appl Phys Lett 72:73CrossRefGoogle Scholar
  34. 34.
    Binitha NN, Yaakob Z, Resmi R (2010) Cent Eur J Chem 8:182CrossRefGoogle Scholar
  35. 35.
    Zhang J, Li LP, Yan TJ, Li GS (2011) J Phys Chem C 115:13820Google Scholar
  36. 36.
    Karunakaran C, Anilkumar P, Gomathisankar P (2010) Monatsh Chem 141:529CrossRefGoogle Scholar
  37. 37.
    Meng ZD, Zhu L, Choi JG, Chen ML, Oh WC (2011) J Mater Chem 21:7596CrossRefGoogle Scholar
  38. 38.
    Zhang DF, Zeng FB (2011) Russ J Phys Chem A 85:1825Google Scholar
  39. 39.
    Zhang WF, Zhang MS, Yin Z, Chen Q (2000) Appl Phys B 70:261CrossRefGoogle Scholar
  40. 40.
    Fujihara S, Ogawa Y, Kasai A (2004) Chem Mater 16:2965CrossRefGoogle Scholar
  41. 41.
    Tang H, Berger H, Schmid PE, Levy F, Burri G (1993) Solid State Commun 87:847CrossRefGoogle Scholar
  42. 42.
    Anpo M, Alkawan N, Kubokaway Y (1985) J Phys Chem 89:5017CrossRefGoogle Scholar
  43. 43.
    Osgood R (2006) Chem Rev 106:4379CrossRefGoogle Scholar
  44. 44.
    Benvenutti EV, Franken L, Moro CC (1999) Langmuir 15:8140CrossRefGoogle Scholar
  45. 45.
    Yeung KL, Yau ST, Maira AJ, Coronado JM, Soria J, Yue PL (2003) J Catal 219:107CrossRefGoogle Scholar
  46. 46.
    Ding Z, Lu GQ, Greenfield PF (2000) J Phys Chem B 104:4815CrossRefGoogle Scholar
  47. 47.
    Yang S, Lou L, Wang K (2006) Appl Catal A 301:152CrossRefGoogle Scholar
  48. 48.
    Venkatachalam N, Palanichamy M, Murugesan V (2007) J Mol Catal A 273:177CrossRefGoogle Scholar
  49. 49.
    Fu HB, Pan CS, Yao WQ, Zhu YF (2005) J Phys Chem B 109:22432CrossRefGoogle Scholar
  50. 50.
    Qu P, Zhao J, Shen T, Hidaka H (1998) J Mol Catal A 129:257CrossRefGoogle Scholar
  51. 51.
    Litter MI (1999) Appl Catal B 23:89CrossRefGoogle Scholar
  52. 52.
    Pelizzetti E, Minero C (1993) Electrochim Acta 38:47CrossRefGoogle Scholar
  53. 53.
    Hanaor DAH, Sorrell CC (2011) J Mater Sci 46:855CrossRefGoogle Scholar
  54. 54.
    Primo A, Corma A, Garcia H (2011) Phys Chem Chem Phys 13:886CrossRefGoogle Scholar
  55. 55.
    Ou CC, Yang CS, Lin SH (2011) Catal Sci Technol 1:295CrossRefGoogle Scholar
  56. 56.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C 1:1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.College of ScienceHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations