Monatshefte für Chemie - Chemical Monthly

, Volume 141, Issue 12, pp 1267–1272 | Cite as

The scale-up of material microstructuring: from scanning probes to self-assembly

  • Tobias KrausEmail author


The behaviour of materials is governed by their microstructures, whether they are naturally occurring or artificially designed. Engineered microstructures lead to materials with new and useful functions, but their real-world application requires scalable microstructuring methods for production. This review discusses several principles of fabrication and their scalability. Replication by imprint and multiplexed probes are obvious candidates for scale-up, but they limit the choice of materials. The assembly of interacting particles is a promising, scalable fabrication method. A wide range of materials can be obtained as particles which assemble into regular superstructures, but large-scale structuring at high precision and yield as yet remains a challenge.

Graphical abstract


Microstructure Microfabrication Nanotechnology Particles 



The author thanks Marleen Kamperman and Eoin Murray for helpful discussions and Eduard Arzt for his continuous support.


  1. 1.
    Arzt E, Gorb S, Spolenak R (2003) Proc Natl Acad Sci U S A 100:10603CrossRefGoogle Scholar
  2. 2.
    Shalaev VM, Cai WS, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Opt Lett 30:3356CrossRefGoogle Scholar
  3. 3.
    Dimitrov AS, Nagayama K (1996) Langmuir 12:1303CrossRefGoogle Scholar
  4. 4.
    White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Nature 409:794CrossRefGoogle Scholar
  5. 5.
    del Campo A, Greiner C, Arzt E (2007) Langmuir 23:10235CrossRefGoogle Scholar
  6. 6.
    Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondia JP, Ozin GA, Toader O, van Driel HM (2000) Nature 405:437CrossRefGoogle Scholar
  7. 7.
    Madou MC (2010) Manufacturing techniques for microfabrication and nanotechnology. CRC, Boca RatonGoogle Scholar
  8. 8.
    Michel B, Bernard A, Bietsch A, Delamarche E, Geissler M, Juncker D, Kind H, Renault JP, Rothuizen H, Schmid H, Schmidt-Winkel P, Stutz R, Wolf H (2001) IBM J Res Dev 45:697CrossRefGoogle Scholar
  9. 9.
    Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM (2005) J Am Chem Soc 127:10096CrossRefGoogle Scholar
  10. 10.
    Gates BD, Xu QB, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) Chem Rev 105:1171CrossRefGoogle Scholar
  11. 11.
    Renesse RL (2005) Optical document security, 3rd edn. Artech, BostonGoogle Scholar
  12. 12.
    Moon JH, Ford J, Yang S (2006) Polym Adv Technol 17:83CrossRefGoogle Scholar
  13. 13.
    Sekula S, Fuchs J, Weg-Remers S, Nagel P, Schuppler S, Fragala J, Theilacker N, Franueb M, Wingren C, Ellmark P, Borrebaeck CAK, Mirkin CA, Fuchs H, Lenhert S (2008) Small 4:1785CrossRefGoogle Scholar
  14. 14.
    Salaita K, Wang YH, Fragala J, Vega RA, Liu C, Mirkin CA (2006) Angew Chem Int Ed 45:7220CrossRefGoogle Scholar
  15. 15.
    Pires D, Hedrick JL, De Silva A, Frommer J, Gotsmann B, Wolf H, Despont M, Duerig U, Knoll AW (2010) Science 328:732CrossRefGoogle Scholar
  16. 16.
    Glotzer SC, Solomon MJ (2007) Nat Mater 6:557CrossRefGoogle Scholar
  17. 17.
    Lindsey JS (1991) New J Chem 15:153Google Scholar
  18. 18.
    Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006) Nature 439:55CrossRefGoogle Scholar
  19. 19.
    Velikov KP, Christova CG, Dullens RPA, van Blaaderen A (2002) Science 296:106CrossRefGoogle Scholar
  20. 20.
    Whitesides GM, Grzybowski B (2002) Science 295:2418CrossRefGoogle Scholar
  21. 21.
    Murphy MP, Kim S, Sitti M (2009) ACS Appl Mater Interfaces 1:849CrossRefGoogle Scholar
  22. 22.
    Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Nature 405:681CrossRefGoogle Scholar
  23. 23.
    Jeong HE, Lee JK, Kim HN, Moon SH, Suh KY (2009) Proc Natl Acad Sci U S A 106:5639CrossRefGoogle Scholar
  24. 24.
    Kraus T, Malaquin L, Delamarche E, Schmid H, Spencer ND, Wolf H (2005) Adv Mater 17:2438CrossRefGoogle Scholar
  25. 25.
    Pinto YY, Le JD, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA (2005) Nano Lett 5:2399CrossRefGoogle Scholar
  26. 26.
    Sharma J, Chhabra R, Liu Y, Ke YG, Yan H (2006) Angew Chem Int Ed 45:730CrossRefGoogle Scholar
  27. 27.
    Murray CB, Kagan CR, Bawendi MG (2000) Ann Rev Mat Sci 30:545CrossRefGoogle Scholar
  28. 28.
    Glaser J, Carroad PA, Dunkley WL (1980) J Dairy Sci 63:37CrossRefGoogle Scholar
  29. 29.
    Chen Z, O’Brien S (2008) ACS Nano 2:1219CrossRefGoogle Scholar
  30. 30.
    Laves F (1956) In: Proceedings of theory of alloy phases: a seminar on theory of alloy phases held during the thirty-seventh national metal congress and exposition, Philadelphia, USA, October 15 to 21, 1955, American Society for Metals, p 125Google Scholar
  31. 31.
    Solomon T, Solomon MJ (2006) J Chem Phys 124:134905CrossRefGoogle Scholar
  32. 32.
    Weitz DA, Huang JS, Lin MY, Sung J (1985) Phys Rev Lett 54:1416CrossRefGoogle Scholar
  33. 33.
    Malaquin L, Kraus T, Schmid H, Delamarche E, Wolf H (2007) Langmuir 23:11513CrossRefGoogle Scholar
  34. 34.
    Heath JR, Kuekes PJ, Snider GS, Williams RS (1998) Science 280:1716CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Structure Formation GroupLeibniz Institute for New Materials (INM)SaarbrückenGermany

Personalised recommendations