Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 141, Issue 1, pp 19–22 | Cite as

Protonation of electroneutral p-tert-butylcalix[4]arenetetraacetic acid

  • Jaroslav Kříž
  • Jiří Dybal
  • Emanuel MakrlíkEmail author
  • Jan Budka
  • Petr Vaňura
Original Paper

Abstract

Using 1H NMR spectroscopy together with density functional theoretical calculations, it is shown that electroneutral p-tert-butylcalix[4]arenetetraacetic acid forms an equimolar complex with a proton in the form of the H3O+ ion in nitrobenzene-d 5. Protons were offered by hydrogen bis(1,2-dicarbollyl)cobaltate and converted to hydroxonium ions by traces of water. In the resulting complex, the H3O+ cation is bound by strong hydrogen bonds to two phenoxy oxygen atoms of the parent calix[4]arene ligand and to one carbonyl oxygen of the corresponding COOH group of this ligand.

Graphical Abstract

Keywords

Calixarenes Macrocycles Protonation Ab initio calculations Complex structure 

Notes

Acknowledgments

This work was supported by the Academy of Sciences of the Czech Republic, project T 400500402, and by the Czech Ministry of Education, Youth, and Sports, projects MSM 4977751303, MSM 6046137301, and MSM 6046137307.

References

  1. 1.
    Gutsche CD (1998) Calixarenes Revisited. The Royal Society of Chemistry, CambridgeGoogle Scholar
  2. 2.
    Böhmer V (1995) Angew Chem Int Ed 34:713CrossRefGoogle Scholar
  3. 3.
    Arduini A, Pochini A, Reverberi S, Ungaro R (1986) Tetrahedron 42:2089CrossRefGoogle Scholar
  4. 4.
    Arduini A, Ghidini E, Pochini A, Ungaro R, Andreetti GD, Calestani G, Ugozzoli F (1988) J Inclusion Phenom Macrocyclic Chem 6:119CrossRefGoogle Scholar
  5. 5.
    Arnaud-Neu F, Collins EM, Deasy M, Ferguson G, Harris SJ, Kaitner B, Lough AJ, McKervey MA, Marques E, Ruhl BL, Schwing-Weill MJ, Seward EM (1989) J Am Chem Soc 111:8681CrossRefGoogle Scholar
  6. 6.
    Arnaud-Neu F, Barrett G, Harris SJ, Owens M, McKervey MA, Schwing-Weill MJ, Schwinté P (1993) Inorg Chem 32:2644CrossRefGoogle Scholar
  7. 7.
    Ohto K, Murakami E, Shinohara T, Shiratsuchi K, Inoue K, Iwasaki M (1997) Anal Chim Acta 341:275CrossRefGoogle Scholar
  8. 8.
    Ye Z, He W, Shi X, Zhu L (2001) J Coord Chem 54:105CrossRefGoogle Scholar
  9. 9.
    Danil de Namor AF, Chahine S, Kowalska D, Castellano EE, Piro OE (2002) J Am Chem Soc 124:12824CrossRefGoogle Scholar
  10. 10.
    Marcos PM, Ascenso JR, Segurado MAP, Pereira JLC (2002) J Inclusion Phenom Macrocyclic Chem 42:281CrossRefGoogle Scholar
  11. 11.
    Marcos PM, Félix S, Ascenso JR, Segurado MAP, Pereira JLC, Khazaeli-Parsa P, Hubscher-Bruder V, Arnaud-Neu F (2004) New J Chem 28:748CrossRefGoogle Scholar
  12. 12.
    Makrlík E, Vaňura P (2006) Monatsh Chem 137:1185CrossRefGoogle Scholar
  13. 13.
    Dybal J, Makrlík E, Vaňura P (2007) Monatsh Chem 138:541CrossRefGoogle Scholar
  14. 14.
    Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2007) Monatsh Chem 138:735CrossRefGoogle Scholar
  15. 15.
    Dybal J, Makrlík E, Vaňura P, Budka J (2007) Monatsh Chem 138:1239CrossRefGoogle Scholar
  16. 16.
    Dybal J, Makrlík E, Vaňura P, Selucký P (2008) Monatsh Chem 139:1175CrossRefGoogle Scholar
  17. 17.
    Dybal J, Makrlík E, Budka J, Vaňura P (2008) Monatsh Chem 139:1353CrossRefGoogle Scholar
  18. 18.
    Makrlík E, Dybal J, Vaňura P (2009) Monatsh Chem 140:29CrossRefGoogle Scholar
  19. 19.
    Makrlík E, Dybal J, Budka J, Vaňura P (2009) Monatsh Chem 140:1155CrossRefGoogle Scholar
  20. 20.
    Cunningham IA, Woolfall M (2005) J Org Chem 70:9248CrossRefGoogle Scholar
  21. 21.
    Kříž J, Dybal J, Makrlík E (2006) Biopolymers 82:536CrossRefGoogle Scholar
  22. 22.
    Kříž J, Makrlík E, Vaňura P (2006) Biopolymers 81:104CrossRefGoogle Scholar
  23. 23.
    Makrlík E, Vaňura P (1985) Talanta 32:423CrossRefGoogle Scholar
  24. 24.
    Gutsche CD (1995) Aldrichimica Acta 28:3Google Scholar
  25. 25.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford, CTGoogle Scholar
  26. 26.
    Kříž J, Dybal J, Makrlík E, Vaňura P, Lang J (2007) Supramol Chem 19:419CrossRefGoogle Scholar
  27. 27.
    Kříž J, Dybal J, Makrlík E, Vaňura P (2008) Supramol Chem 20:387CrossRefGoogle Scholar
  28. 28.
    Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2008) Supramol Chem 20:487CrossRefGoogle Scholar
  29. 29.
    Kříž J, Dybal J, Makrlík E, Budka J (2008) J Phys Chem A 112:10236CrossRefGoogle Scholar
  30. 30.
    Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2009) J Phys Chem A 113:5896CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jaroslav Kříž
    • 1
  • Jiří Dybal
    • 1
  • Emanuel Makrlík
    • 2
    Email author
  • Jan Budka
    • 3
  • Petr Vaňura
    • 3
  1. 1.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Faculty of Applied SciencesUniversity of West BohemiaPilsenCzech Republic
  3. 3.Institute of Chemical TechnologyPragueCzech Republic

Personalised recommendations