Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 140, Issue 9, pp 1103–1112 | Cite as

Characterizing ion dynamics in nanoscopic volumes: time-domain electrostatic force spectroscopy on solid electrolytes

  • André Schirmeisen
  • Bernhard RolingEmail author
Original Paper

Abstract

Abstract

We use time-domain electrostatic force spectroscopy (TD-EFS) for characterizing the ion dynamics in solid electrolytes on a nanoscopic level. For partially crystallized glass ceramics we are able to distinguish between dynamic processes in the glassy phase, in crystallites, and at interfaces. Nanoscopic polarization spots can be created and directly visualized, and their time evolution can be studied. By applying grid-type spectroscopic measurements, maps of the local relaxation strength can be obtained, giving information about the spatial distribution of the glassy and crystalline phases.

Graphical abstract

Keywords

Electrostatic force spectroscopy Ionic conduction Glass ceramics Nanocrystallites Interfaces 

Notes

Acknowledgments

We are grateful to Ahmet Taskiran for carrying out the TD-EFS measurements, to Professor Harald Fuchs for providing access to the variable-temperature AFM, and to Professor H. Bracht for valuable discussions. Furthermore, we acknowledge financial support of our work by the German Science Foundation (DFG, SFB 458).

References

  1. 1.
    Scrosati B, Croce F, Persi L (2000) J Electrochem Soc 147:1718CrossRefGoogle Scholar
  2. 2.
    Indris S, Heitjans P, Roman HE, Bunde A (2000) Phys Rev Lett 84:2889CrossRefGoogle Scholar
  3. 3.
    Sata N, Eberman K, Eberl K, Maier J (2000) Nature 408:946CrossRefGoogle Scholar
  4. 4.
    Adams St, Hariharan K, Maier J (1996) Solid State Ionics 86–88:503CrossRefGoogle Scholar
  5. 5.
    Croce F, Appetecci GB, Persi L, Scrosati B (1998) Nature 394:456CrossRefGoogle Scholar
  6. 6.
    Croce F, Persi L, Ronci F, Scrosati B (2000) Solid State Ionics 135:47CrossRefGoogle Scholar
  7. 7.
    Maier J (1995) Prog Solid State Chem 23:171CrossRefGoogle Scholar
  8. 8.
    Binnig G, Quate CF, Gerber Ch (1986) Phys Rev Lett 56:930CrossRefGoogle Scholar
  9. 9.
    Fleig J, Rodewald S, Maier J (2000) Solid State Ionics 136–137:905CrossRefGoogle Scholar
  10. 10.
    Zavyalov VV, McMurray JS, Williams CC (1999) Rev Sci Instrum 70:158CrossRefGoogle Scholar
  11. 11.
    Brezna W, Harasek S, Bartagnolli E, Gornik E, Smoliner J, Enichlmair H (2002) J Appl Phys 92:2144CrossRefGoogle Scholar
  12. 12.
    Visoly-Fisher I, Cohen SR, Cahen D (2003) Appl Phys Lett 92:556CrossRefGoogle Scholar
  13. 13.
    Lin H-N, Lin H-L, Wang S-S, Yu L-S, Perng G-Y, Chen S-A, Chen S-H (2002) Appl Phys Lett 81:2572CrossRefGoogle Scholar
  14. 14.
    Luo EZ, Ma JX, Xu JB, Wilson IH, Pakhomov AB, Yan X (1996) J Phys D Appl Phys 29:3169CrossRefGoogle Scholar
  15. 15.
    Stadermann M, Papadakis SJ, Falvo MR, Novak J, Snow E, Fu Q, Liu J, Fridman Y, Boland JJ, Superfine R, Washburn S (2004) Phys Rev B 69:201402CrossRefGoogle Scholar
  16. 16.
    Albrecht TR, Grütter P, Horne D, Rugar D (1991) J Appl Phys 69:668CrossRefGoogle Scholar
  17. 17.
    Hölscher H, Schirmeisen A (2005) Adv Imaging Electron Phys 135:41CrossRefGoogle Scholar
  18. 18.
    Gil A, Pablo PJ, Colchero J, Gomez-Herrero J, Baro AM (2002) Nanotechnology 13:309CrossRefGoogle Scholar
  19. 19.
    Gomez-Navarro C, Moreno-Herrero F, de Pablo PJ, Colchero J, Gomez-Herrero J, Baro AM (2002) Proc Natl Acad Sci USA 99:8484CrossRefGoogle Scholar
  20. 20.
    Russell EV, Israeloff NE, Walther LE, Alvarez-Gomariz H (1998) Phys Rev Lett 81:1461CrossRefGoogle Scholar
  21. 21.
    Russell EV, Israeloff NE (2000) Nature 408:695CrossRefGoogle Scholar
  22. 22.
    Bennewitz R, Reichling M, Matthias E (1997) Surf Sci 387:69CrossRefGoogle Scholar
  23. 23.
    Luna M, Rieutord F, Melman NA, Dai Q, Salmeron M (1998) J Phys Chem A 102:6793CrossRefGoogle Scholar
  24. 24.
    Layson A, Gadad S, Teeters D (2003) Electrochim Acta 48:2207CrossRefGoogle Scholar
  25. 25.
    Bhattacharyya AJ, Fleig J, Guo YG, Maier J (2005) Adv Mater 17:2630CrossRefGoogle Scholar
  26. 26.
    O’Hayre R, Lee M, Prinz FB (2004) J Appl Phys 95:8382CrossRefGoogle Scholar
  27. 27.
    Walther LE, Israeloff NE, Russel EV, Gomariz HA (1998) Phys Rev B 57:R15112CrossRefGoogle Scholar
  28. 28.
    Schirmeisen A, Taskiran A, Fuchs H, Roling B, Murugavel S, Bracht H, Natrup F (2004) Appl Phys Lett 85:2053CrossRefGoogle Scholar
  29. 29.
    Roling B, Murugavel S (2005) Z Phys Chem 219:23CrossRefGoogle Scholar
  30. 30.
    Roling B, Schirmeisen A, Bracht H, Taskiran A, Fuchs H, Murugavel S, Natrup F (2005) Phys Chem Chem Phys 7:1472CrossRefGoogle Scholar
  31. 31.
    Schirmeisen A, Taskiran A, Fuchs H, Bracht H, Murugavel S, Roling B (2007) Phys Rev Lett 98:225901CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of Physics and Center for Nanotechnology (CeNTech)University of MünsterMünsterGermany
  2. 2.Department of Chemistry and Center for Materials Science (WZMW)University of MarburgMarburgGermany

Personalised recommendations