Monatshefte für Chemie - Chemical Monthly

, Volume 140, Issue 9, pp 975–983 | Cite as

Micro-solid oxide fuel cells: status, challenges, and chances

  • Anna Evans
  • Anja Bieberle-Hütter
  • Henning Galinski
  • Jennifer L. M. Rupp
  • Thomas Ryll
  • Barbara Scherrer
  • René Tölke
  • Ludwig J. Gauckler
Review Paper

Abstract

Abstract

Micro-solid oxide fuel cells (micro-SOFC) are predicted to be of high energy density and are potential power sources for portable electronic devices. A micro-SOFC system consists of a fuel cell comprising a positive electrode-electrolyte-negative electrode (i.e. PEN) element, a gas-processing unit, and a thermal system where processing is based on micro-electro-mechanical-systems fabrication techniques. A possible system approach is presented. The critical properties of the thin film materials used in the PEN membrane are discussed, and the unsolved subtasks related to micro-SOFC membrane development are pointed out. Such a micro-SOFC system approach seems feasible and offers a promising alternative to state-of-the-art batteries in portable electronics.

Graphical abstract

Graphical Abstract text

Keywords

Micro-solid oxide fuel cell Thin film deposition MEMS Microfabrication Gas processing Thermal system 

References

  1. 1.
    Kundu A, Jang JH, Gil JH, Jung CR, Lee HR, Kim SH, Ku B, Oh YS (2007) J Power Sources 170(1):67CrossRefGoogle Scholar
  2. 2.
    La O’ GJ, In HJ, Crumlin E, Barbastathis G, Shao-Horn Y (2007) Int J Energy Res 31(6–7):548CrossRefGoogle Scholar
  3. 3.
    Schaevitz SB, Franz A, Barton R (2005) US 2005/0115889Google Scholar
  4. 4.
    Schaevitz SB, Franz A, Barton R, Ludwiszewski AP (2006) US 2006/0263655Google Scholar
  5. 5.
    Bieberle-Hutter A, Beckel D, Infortuna A, Muecke UP, Rupp JLM, Gauckler LJ, Rey-Mermet S, Muralt P, Bieri NR, Hotz N, Stutz MJ, Poulikakos D, Heeb P, Muller P, Bernard A, Gmur R, Hocker T (2008) J Power Sources 177:123CrossRefGoogle Scholar
  6. 6.
    Infortuna A, Harvey AS, Gauckler LJ (2008) Adv Funct Mater 18:127CrossRefGoogle Scholar
  7. 7.
    Muecke UP, Beckel D, Bernard A, Bieberle-Hütter A, Graf S, Infortuna A, Müller P, Rupp JLM, Schneider J, Gauckler LJ (2008) Adv Funct Mater 18:1CrossRefGoogle Scholar
  8. 8.
    Muecke UP, Akiba K, Infortuna A, Salkus T, Stus NV, Gauckler LJ (2008) Solid State Ionics 178(33–34):1762CrossRefGoogle Scholar
  9. 9.
    Beckel D, Bieberle-Hutter A, Harvey A, Infortuna A, Muecke UP, Prestat M, Rupp JLM, Gauckler LJ (2007) J Power Sources 173:325CrossRefGoogle Scholar
  10. 10.
    Rupp JLM, Infortuna A, Gauckler LJ (2007) J Am Ceram Soc 90(6):1792CrossRefGoogle Scholar
  11. 11.
    Robert G (2004) EP 1 455 409 A1Google Scholar
  12. 12.
    Gauckler LJ, Beckel D, Muecke UP, Müller P, Rupp JLM (2007) WO2007/045111Google Scholar
  13. 13.
    Gauckler LJ, Beckel D, Muecke UP, Müller P, Rupp JLM (2007) WO2007/045113Google Scholar
  14. 14.
    Beckel D, Gauckler LJ (2007) WO2007056876-A1; EP1951641-A1Google Scholar
  15. 15.
    Rey-Mermet S, Muralt P (2008) Solid State Ionics 179(27–32):1497CrossRefGoogle Scholar
  16. 16.
    Rey-Mermet S, Muralt P, Baborowski J (2007) PCT/EP2006/069688Google Scholar
  17. 17.
    Stutz MJ, Grass RN, Loher S, Stark WJ, Poulikakos D (2008) J Power Sources 182(2):558CrossRefGoogle Scholar
  18. 18.
    Stutz MJ, Hotz N, Poulikakos D (2006) Chem Eng Sci 61(12):4027CrossRefGoogle Scholar
  19. 19.
    Stutz MJ, Stark WJ, Poulikakos D (2007) EP 07012131Google Scholar
  20. 20.
    Hotz N, Stutz MJ, Loher S, Stark WJ, Poulikakos D (2007) Appl Catal B 73(3–4):336CrossRefGoogle Scholar
  21. 21.
    Hotz N, Senn SM, Poulikakos D (2006) J Power Sources 158(1):333CrossRefGoogle Scholar
  22. 22.
    Hotz N, Poulikakos D, Studart AR, Bieberle-Hütter A, Gauckler LJ (2008) EP 08 012273Google Scholar
  23. 23.
    Baertsch CD, Jensen KF, Hertz JL, Tuller HL, Vengallatore ST, Spearing SM, Schmidt MA (2004) J Mater Res 19(9):2604CrossRefGoogle Scholar
  24. 24.
    Huang H, Nakamura M, Su PC, Fasching R, Saito Y, Prinz FB (2007) J Electrochem Soc 154(1):B20CrossRefGoogle Scholar
  25. 25.
    Hotz N, Osterwalder N, Stark WJ, Bieri NR, Poulikakos D (2008) Chem Eng Sci 63(21):5193CrossRefGoogle Scholar
  26. 26.
    Su PC, Chao CC, Shim JH, Fasching R, Prinz FB (2008) Nano Lett 8(8):2289CrossRefGoogle Scholar
  27. 27.
    Shim JH, Chao CC, Huang H, Prinz FB (2007) Chem Mater 19(15):3850CrossRefGoogle Scholar
  28. 28.
    Kang S, Su PC, Park YI, Saito Y, Prinz FB (2006) J Electrochem Soc 153(3):A554CrossRefGoogle Scholar
  29. 29.
    Kwon C-W, Son J-W, Lee D-J, Kim K-B, Lee J-H, Lee H-W (2008) In: Lucerne Fuel Cell Forum, LucerneGoogle Scholar
  30. 30.
    Joo JH, Choi GM (2008) J Power Sources 182(2):589CrossRefGoogle Scholar
  31. 31.
    Rupp JLM, Infortuna A, Gauckler LJ (2006) Acta Mater 54(7):1721CrossRefGoogle Scholar
  32. 32.
    Rupp JLM, Solenthaler C, Gasser P, Muecke UP, Gauckler LJ (2007) Acta Mater 55(10):3505CrossRefGoogle Scholar
  33. 33.
    Rupp JLM, Scherrer B, Harvey A, Gauckler LJ (2009) Adv Funct Mater (in review)Google Scholar
  34. 34.
    Knauth P, Tuller HL (2000) Solid State Ionics 136:1215CrossRefGoogle Scholar
  35. 35.
    Chiang YM, Lavik EB, Kosacki I, Tuller HL, Ying JY (1996) Appl Phys Lett 69(2):185CrossRefGoogle Scholar
  36. 36.
    Kosacki I, Suzuki T, Anderson HU, Colomban P (2002) Solid State Ionics 149(1–2):99Google Scholar
  37. 37.
    Maier J (2003) Z Phys Chem 217(4):415CrossRefGoogle Scholar
  38. 38.
    Steele BCH (2000) Oxygen ion and mixed conductors and their technological applications, vol 368. Springer, Erice, p 323Google Scholar
  39. 39.
    Greenberg M, Wachtel E, Lubomirsky I, Fleig J, Maier J (2006) Adv Funct Mater 16(1):48CrossRefGoogle Scholar
  40. 40.
    Perednis D, Gauckler LJ (2004) Solid State Ionics 166(3–4):229CrossRefGoogle Scholar
  41. 41.
    Perednis D, Gauckler LJ (2003) Solid oxide fuel cells VIII (SOFC VIII). In: 8th international symposium on solid oxide fuel cells, Paris, 27 Apr 2003–2 May 2003. vol 7. Electrochemical Society Inc, Pennington, p 970–975Google Scholar
  42. 42.
    Hertz JL, Tuller HL (2004) J Electroceram 13(1–3):663CrossRefGoogle Scholar
  43. 43.
    Kosacki I, Rouleau CM, Becher PF, Bentley J, Lowndes DH (2005) Solid State Ionics 176(13–14):1319CrossRefGoogle Scholar
  44. 44.
    Kosacki I, Suzuki T, Petrovsky V, Anderson HU (2000) Solid State Ionics 136:1225CrossRefGoogle Scholar
  45. 45.
    Chiodelli G, Malavasi L, Massarotti V, Mustarelli P, Quartarone E (2005) Solid State Ionics 176(17–18):1505CrossRefGoogle Scholar
  46. 46.
    Atkinson A, Ramos TMGM (2000) Solid State Ionics 129(1–4):259CrossRefGoogle Scholar
  47. 47.
    Joo JH, Choi GM (2006) Solid State Ionics 177(11–12):1053CrossRefGoogle Scholar
  48. 48.
    Heiroth S, Lippert T, Wokaun A, Döbeli M (2008) Appl Phys A: Mater Sci Process 93:639CrossRefGoogle Scholar
  49. 49.
    Huang H, Gur TM, Saito Y, Prinz F (2006) Appl Phys Lett 89(14):143107CrossRefGoogle Scholar
  50. 50.
    Suzuki T, Kosacki I, Anderson HU (2002) Solid State Ionics 151(1–4):111Google Scholar
  51. 51.
    Rupp JLM, Gauckler LJ (2006) Solid State Ionics 177(26–32):2513CrossRefGoogle Scholar
  52. 52.
    Srolovitz DJ, Yang W, Goldiner MG (1996) Polycrystalline thin films: structure, texture, properties, and applications II. In: Conference on polycrystalline thin films—structure, texture, properties, and applications II, Boston, 27 Nov 1995–1 Dec 1995. vol 403. Materials Research Soc, Pittsburgh, p 3–13Google Scholar
  53. 53.
    de Gennes PG (1985) Rev Mod Phys 57(3):827CrossRefGoogle Scholar
  54. 54.
    Brochard Wyart F, Daillant J (1990) Can J Phys 68(9):1084CrossRefGoogle Scholar
  55. 55.
    Wang XH, Huang H, Holme T, Tian X, Prinz FB (2008) J Power Sources 175:75CrossRefGoogle Scholar
  56. 56.
    Rupp JLM, Bieberle-Hütter A, Evans A, Galinski H, Ryll T, Scherrer B, Tölke R, Gauckler LJ (2008) In: European Fuel Cell Forum, LucerneGoogle Scholar
  57. 57.
    La O’ GJ, Hertz J, Tuller H, Shao-Horn Y (2004) J Electroceram 13(1–3):691CrossRefGoogle Scholar
  58. 58.
    Muecke UP, Graf S, Rhyner U, Gauckler LJ (2008) Acta Mater 56(4):677CrossRefGoogle Scholar
  59. 59.
    Peters C, Weber A, Ivers-Tiffee E (2008) J Electrochem Soc 155(7):B730CrossRefGoogle Scholar
  60. 60.
    Bieberle-Hutter A, Tuller HL (2006) J Electroceram 16(2):151CrossRefGoogle Scholar
  61. 61.
    Bieberle-Hutter A, Sogaard M, Tuller HL (2006) Solid State Ionics 177(19–25):1969CrossRefGoogle Scholar
  62. 62.
    Steele BCH, Bae JM (1998) Solid State Ionics 106(3–4):255CrossRefGoogle Scholar
  63. 63.
    Prestat M, Koenig JF, Gauckler LJ (2007) J Electroceram 18(1–2):87CrossRefGoogle Scholar
  64. 64.
    Prestat M, Infortuna A, Korrodi S, Rey-Mermet S, Muralt P, Gauckler LJ (2007) J Electroceram 18(1–2):111CrossRefGoogle Scholar
  65. 65.
    Baumann FS, Fleig J, Cristiani G, Stuhlhofer B, Habermeier HU, Maier J (2007) J Electrochem Soc 154(9):B931CrossRefGoogle Scholar
  66. 66.
    Beckel D, Muecke UP, Gyger T, Florey G, Infortuna A, Gauckler LJ (2007) Solid State Ionics 178(5–6):407CrossRefGoogle Scholar
  67. 67.
    Shao ZP, Haile SM (2004) Nature 431(7005):170CrossRefGoogle Scholar
  68. 68.
    Baumann FS, Fleig J, Habermeier HU, Maier J (2006) Solid State Ionics 177(35–36):3187CrossRefGoogle Scholar
  69. 69.
    Baumann FS, Maier J, Fleig J (2008) Solid State Ionics 179:1198Google Scholar
  70. 70.
    Bieberle-Hutter A, Beckel D, Muecke UP, Rupp JLM, Infortuna A, Gauckler LJ (2005) Mst News 04/05:12Google Scholar
  71. 71.
    Manhattan Scientifics & Lawrence Livermore National Laboratories and Sulzer Hexis (2002) Personal communicationGoogle Scholar
  72. 72.
    Bieberle-Hutter A, Beckel D, Galinski H, Infortuna A, Muecke UP, Rupp JLM, Ryll T, Scherrer B, Toelke R, Gauckler LJ, Rey-Mermet S, Muralt P, Bieri NR, Hotz N, Stutz MJ, Poulikakos D, Heeb P, Bernard A, Gmur R, Hocker T (2008) In: European Fuel Cell Forum, LucerneGoogle Scholar
  73. 73.
    Thomas G (2003) Invited BES hydrogen workshop presentation. Sandia National Laboratories, AlbuquerqueGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Anna Evans
    • 1
  • Anja Bieberle-Hütter
    • 2
  • Henning Galinski
    • 3
  • Jennifer L. M. Rupp
    • 4
  • Thomas Ryll
    • 5
  • Barbara Scherrer
    • 1
  • René Tölke
    • 5
  • Ludwig J. Gauckler
    • 6
  1. 1.Nonmetallic Inorganic MaterialsETH ZurichZurichSwitzerland
  2. 2.Nonmetallic Inorganic MaterialsETH ZurichZurichSwitzerland
  3. 3.Nonmetallic Inorganic MaterialsETH ZurichZurichSwitzerland
  4. 4.Nonmetallic Inorganic MaterialsETH ZurichZurichSwitzerland
  5. 5.Nonmetallic Inorganic MaterialsETH ZurichZurichSwitzerland
  6. 6.Nonmetallic Inorganic MaterialsETH ZurichZurichSwitzerland

Personalised recommendations