Monatshefte für Chemie - Chemical Monthly

, Volume 138, Issue 4, pp 347–355 | Cite as

A Test Concept for Lifetime Prediction of Polyethylene Pressure Pipes

  • Gerald PinterEmail author
  • Reinhold W. Lang
  • Markus Haager


The present paper describes the main elements of a novel concept for lifetime and safety assessment of polyethylene pressure pipes for arbitrary installation conditions based on modern methods of fracture mechanics. At the core of the proposed concept is the accelerated generation of so-called synthetic crack growth curves and corresponding material laws for crack growth initiation and slow crack growth for service-near temperature conditions without the use of stress cracking liquids.

Keywords. Fracture mechanics; Slow crack growth; Fatigue. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brömstrup, H eds. 1998Rohrsysteme aus PE 100Vulkan VerlagEssenGoogle Scholar
  2. Krietenbrink H, Kloth R (2004) 100 Jahre Nutzungsdauer von PE-Rohrsystemen in der Wasserversorgung – Anspruch oder Realität. In: Tagungsband Wiesbadener Kunststoffrohrtage, WiesbadenGoogle Scholar
  3. Kiesselbach, G 2004Wasser/Abwasser14545Google Scholar
  4. Kiesselbach, G 2004Wasser/Abwasser145118Google Scholar
  5. Hessel, J 20013R International40178Google Scholar
  6. Hessel, J 20013R International40360Google Scholar
  7. Grosse-Boes, R, Kloth, R 20043R International43233Google Scholar
  8. Hessel, J 20043R International431Google Scholar
  9. Haager M, Pinter G, Lang RW (2004) Applicability and Limitations of the FNCT Methodology to Predict the Long Term Failure Behavior of Polyethylene-Pipe Materials. In: Proceedings ANTEC, ChicagoGoogle Scholar
  10. Lang, RW, Stern, A, Dörner, G 1997Ang Makromol Chem247131CrossRefGoogle Scholar
  11. Pinter G, Lang RW (2003) Creep Crack Growth in High Density Polyethylene. In: Moore R (ed) The Application of Fracture Mechanics to Polymers, Adhesives and Composites. ESIS Publication 33, Elsevier Science Ltd and ESIS, AmsterdamGoogle Scholar
  12. Brown, N, Lu, X, Huang, Y, Harrison, IP, Ishikawa, N 1992Plast Rub Compos Proc17255Google Scholar
  13. Pinter, G, Lang, RW 2001Plast Rubber Compos3094Google Scholar
  14. Pinter G, Balika W, Lang RW (2002) A Correlation of Creep and Fatigue Crack Growth in High Density Polyethylene at Various Temperatures. In: Remy L, Petit J (eds) Temperature-Fatigue Interaction. ESIS Publikation 29, Elsevier Science Ltd. and ESIS, AmsterdamGoogle Scholar
  15. Balika W, Lang RW (2004) Modelling of Slow Crack Growth in PVC-U and PB Based on Fatigue Crack Growth Experiments. In: Proceedings Plastics Pipes XII, BavenoGoogle Scholar
  16. Pinter G, Haager M, Balika W, Lang RW (2004) Ranking of PE-HD Pipe Grades by Fatigue Crack Growth Performance. In: Proceedings Plastics Pipes XII, BavenoGoogle Scholar
  17. Parson, M, Stepanov, EV, Hiltner, A, Baer, E 2000J Mat Sci351857CrossRefGoogle Scholar
  18. Kuske, H-D, Bastian, M 20043R Internat43497Google Scholar
  19. Pinter, G, Haager, M, Balika, W, Lang, RW 2005Plast Rubber Compos3425CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Gerald Pinter
    • 1
    Email author
  • Reinhold W. Lang
    • 1
    • 2
  • Markus Haager
    • 3
  1. 1.Institute of Materials Science and Testing of PlasticsUniversity of LeobenLeobenAustria
  2. 2.Polymer Competence Center Leoben GmbHLeobenAustria
  3. 3.Agru Kunststofftechnik GmbHBad HallAustria

Personalised recommendations