Monatshefte für Chemie - Chemical Monthly

, Volume 138, Issue 4, pp 301–307 | Cite as

The Effect of Styrene-Butadiene-Styrene Modification on the Characteristics and Performance of Bitumen

  • Klaus StanglEmail author
  • Andreas Jäger
  • Roman Lackner


In order to cover the effect of styrene-butadiene-styrene (SBS) modification on the characteristics of bitumen, two types of bitumen, one plain bitumen, and one polymer modified bitumen produced with the plain bitumen as base material were characterized in terms of chemical composition, microstructure, micromechanical properties, and thermoanalytical behavior. In order to determine the complex chemical composition of bitumen, elemental analysis, gel permeation chromatography, and the Iatroscan method were employed. Microstructure and micromechanical properties were determined using an environmental scanning electron microscope and the nanoindentation technique. Modulated differential scanning calorimetry was used to determine phase-change temperatures and endo/exotherms associated with molecular movement. The addition of SBS leads to different rheological behavior over the whole service temperature range. This is reflected in bitumen chemistry by differences in elemental composition and molecular weight distribution with much higher M w values for the modified bitumen. Accordingly, the polymer leads to a shift in molecular fractions. Electron microscopy reveals two distinct phases building up the bitumen microstructure. The chosen mode of quantification leads to similar material parameters for both bitumens, which is explained by the use of the same base material. In contrast, nanoindentation delivers viscosities in the micro-range corresponding to large-scale rheological properties. Modulated differential scanning calorimetry indicates two glass transitions corresponding with two material phases also confirmed by other experiments. Due to modification, these glass transitions depart from each other and the amount of the two material phases changes, correlating with the shift in molecular fractions observed in Iatroscan analyses.

Keywords. Polymer-modified; Microstructure; Physicochemical analyses. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Shell-Bitumen, UK 1990The Shell bitumen handbookShell Bitumen UKChertseyGoogle Scholar
  2. Becker, Y, Méndez, MP, Rodríguez, Y 2001Vision Tecnologica939Google Scholar
  3. Stangl, K, Jäger, A, Lackner, R 2006Int J Road Mater Pavement Design7111Google Scholar
  4. Steidl E (1992) Studien über den Nachweis von Styrol-Butadien-Copolymeren in Bitumen und deren Wechselwirungen mit Bitumen, Master’s thesis, Vienna University of Technology, ViennaGoogle Scholar
  5. Rozeveld, S, Shin, E, Bhurke, A, France, L, Drzal, L 1997Microscopy Research Techn38529CrossRefGoogle Scholar
  6. Masson, JF, Polomark, GM 2001Thermochim Acta374105CrossRefGoogle Scholar
  7. Jäger A (2004) Microstructural Identification of Bitumen by Means of Atomic Force Microscopy (AFM), Modulated Differential Scanning Calorimetry (MDSC), and Reflected Light Microscopy (RLM), Master’s Thesis, Vienna University of Technology, ViennaGoogle Scholar
  8. Masson, JF, Polomark, GM, Collins, P 2002Energy Fuel16470CrossRefGoogle Scholar
  9. ÖNORM EN 12591 (2005) Bitumen und bitumenhaltige Bindemittel – Anforderungen an Straßenbaubitumen, Österreichisches Normungsinstitut, 1020 ViennaGoogle Scholar
  10. ÖNORM B3613 (1999) Elastomermodifizierte Bitumen für den Straßenbau – Anforderungen, Österreichisches Normungsinstitut, 1020 ViennaGoogle Scholar
  11. Patent number AT397098 B, OMV Aktiengesellschaft, 1090 ViennaGoogle Scholar
  12. ASTM D5291 (2002) Standard test methods for instrumental determination of carbon, hydrogen and nitrogen in petroleum products and lubricants, ASTM International, West ConshohockenGoogle Scholar
  13. Friedbacher EC (1993) Qualitative und quantitative Gruppentrennung von Bitumen durch Dünnschichtchromatographie kombiniert mit Flammenionisationsdetektion, Dissertation, Vienna University of Technology, ViennaGoogle Scholar
  14. Ulm FJ, Delafargue A, Constandinides G (2005) In: Dormieux L, Ulm FJ (eds) Appl Micromech Porous Mat (CISM Courses and Lectures No. 480), Springer, ViennaGoogle Scholar
  15. Jäger A, Lackner R, Eberhardsteiner J (2006) Meccanica, in printGoogle Scholar
  16. Jäger A, Lackner R, Stangl K (2006) Int J Mat Res, in printGoogle Scholar
  17. Jiang, Z, Imrie, CT, Hutchinson, JM 2002Thermochim Acta3877593CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Christian Doppler Laboratory for “Performance-based Optimization of Flexible Pavements”, Institute for Road Construction and MaintenanceVienna University of TechnologyViennaAustria
  2. 2.Christian Doppler Laboratory for “Performance-based Optimization of Flexible Pavements”, Institute for Mechanics of Materials and StructuresVienna University of TechnologyViennaAustria
  3. 3.FG Computational Mechanics, Technical University of MunichMunichGermany

Personalised recommendations