Advertisement

Monatshefte für Chemie / Chemical Monthly

, Volume 137, Issue 7, pp 899–910 | Cite as

Structure-Infrared Optical Property-Correlations of C,O,H-Polymers for Transparent Insulation and Greenhouse Applications

  • Gernot Wallner
  • Gernot OreskiEmail author
Article

Summary.

In this paper an understanding of the physical relationships between the material structure and the temperature dependent infrared optical properties of different transparent polymer films for solar applications is described. The infrared optical properties are relevant for the heat transport of e.g. greenhouse and transparent insulation structures. The properties were determined based on infrared transmittance measurements and the assumption of a constant index of refraction from the visible range. To establish structure-property-correlations molecular structure parameters such as the concentration of carbon-oxygen single bonds and carbon-hydroxyl groups were determined. For 50 μm thick films a good correlation between the concentration of the functional carbon-hydroxyl and the carbon-oxygen group and the infrared optical thickness as well as the hemispherical emittance was found. This correlation fits well for high and low infrared radiation absorbing polymeric materials consisting of carbon, hydrogen, and oxygen atoms. The carbon-hydroxyl group appears to be slightly more effective than the carbon-oxygen single bond. Interestingly, the correlation works for polymers with aromatic (PC, PET) and aliphatic (PMMA, CTA, ethylene copolymers) groups.

Keywords. Ethylene copolymer; Infrared optical properties; Transparent insulation; Polymer film; Greenhouse. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wallner, GM, Lang, RW, Platzer, W, Teichert, C 2002Macromol Symp181399CrossRefGoogle Scholar
  2. Wallner, GM, Platzer, W, Lang, RW 2005Solar Energy79593CrossRefGoogle Scholar
  3. Tsilingiris, PT 2003Energ Convers Manage442839CrossRefGoogle Scholar
  4. Papadakis, G, Briassoulis, D, Scarascia Mugnozza, G, Vox, G, Feuilloley, P, Stoffers, JA 2000J Agr Eng Res777CrossRefGoogle Scholar
  5. Jäger, KM, Dammert, RC, Sultan, BÅ 2001J Appl Polym Sci841465CrossRefGoogle Scholar
  6. Platzer WJ (1988) PhD thesis, Albert Ludwigs Universität, Freiburg, GermanyGoogle Scholar
  7. Wallner GM (2000) PhD thesis, Montanuniversität Leoben, Leoben, AustriaGoogle Scholar
  8. Sergides, CA, Chughtai, AR, Smith, DM 1987Appl Spectrosc41154CrossRefGoogle Scholar
  9. Oreski, G, Wallner, GM 2006Solar Energy Materials and Solar Cells901208CrossRefGoogle Scholar
  10. Rubin, M 1982Sol Energ Mater6375CrossRefGoogle Scholar
  11. Platzer, WJ 1992Sol Energy48381CrossRefGoogle Scholar
  12. Hum, JEY, Hollands, KGT, Wright, JL 2004Sol Energ7685CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Materials Science and Testing of PlasticsUniversity of LeobenLeobenAustria
  2. 2.Polymer Competence Center Leoben GmbHLeobenAustria

Personalised recommendations