Advertisement

Monatshefte für Chemie / Chemical Monthly

, Volume 137, Issue 6, pp 717–735 | Cite as

Potentiometric and Multinuclear Magnetic Resonance Study of the Solution Equilibria Between Aluminium(III) Ion and L-Aspartic Acid

  • Predrag Djurdjević
  • Ratomir Jelić
  • Ljubinka Joksović
  • Mirjana Cvijović
Article

Summary.

Solution equilibria between aluminium(III) ion and L-aspartic acid were studied by potentiometric, 27Al, 13C, and 1H NMR measurements. Glass electrode equilibrium potentiometric studies were performed on solutions with ligand to metal concentration ratios 1:1, 3:1, and 5:1 with the total metal concentration ranging from 0.5 to 5.0 mmol/dm3 in 0.1 mol/dm3 LiCl ionic medium, at 298 K. The pH of the solutions was varied from ca. 2.0 to 5.0. The non-linear least squares treatment of the data performed with the aid of the Hyperquad program, indicated the formation of the following complexes with the respective stability constants log βp,q,r given in parenthesis (p, q, r are stoichiometric indices for metal, ligand, and proton, respectively): Al(HAsp)2+ (log β1,1,1 = 11.90 ± 0.02); Al(Asp)+ (log β1,1,0 = 7.90 ± 0.03); Al(OH)Asp0 (log β1,1,−1 = 3.32 ± 0.04); Al(OH)2Asp (log β1,1−2 = −1.74 ± 0.08), and Al2(OH) Asp3+ (log β2,1,−1 = 6.30 ± 0.04). 27Al NMR spectra of Al3+ + aspartic acid solutions (pH 3.85) indicate that sharp symmetric resonance at δ∼10 ppm can be assigned to (1, 1, 0) complex. This resonance increases in intensity and slightly broadens upon further increasing the pH. In Al(Asp)+ complex the aspartate is bound tridentately to aluminum. The 1H and 13C NMR spectra of aluminium + aspartic acid solutions at pH 2.5 and 3.0 indicate that β-methylene group undergoes the most pronounced changes upon coordination of aluminum as well as α-carboxylate group in 13C NMR spectrum. Thus, in Al(HAsp)2+ which is the main complex in this pH interval the aspartic acid acts as a bidentate ligand with –COO and –NH2 donors closing a five-membered ring.

Keywords. Aluminium; Aspartic acid; Complex formation; Potentiometry; Multinuclear NMR. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Special recent issues of the journals devoted to aluminum toxicity and chemistry: J Inorg Biochem (2003) 97: Iss. 1; J Inorg Biochem (2001) 87: Iss. 1-2; J Inorg Biochem (1992) 76: Iss. 2; Coord Chem Rev (2002) 228: Iss. 2; Coord Chem Rev (1996) 149Google Scholar
  2. Nayak, P 2002Environ Res A89101CrossRefGoogle Scholar
  3. Gitelman HJ (ed) (1989) Aluminum and Health. A Critical Review, M. Dekker, New York; Van Landeghem FG, De Broe EM, D’Haese CP (1998) Clinical Biochem 31: 385Google Scholar
  4. Martell A, Hancock DR, Smith MR, Motekaitis JR (1996) Coord Chem Rev 149: 311; Martell EA, Motekaitis JR, Smith MR (1990) Polyhedron 9: 171Google Scholar
  5. Williams JPR (1966) Coord Chem Rev 149: 1; Alfrey CA (1995) Toxicity of Detrimental Metal Ions. Aluminum. In: Berthon G (ed) Handbook of Metal-Ligand Interactions in Biological Fluids, vol 2. Bioinorganic Medicine, M. Dekker, New York, pp 735–740Google Scholar
  6. Kiss T, Jakusch T, Kilyen M, Kiss E, Lakatos A (2000) Polyhedron 19: 2389; Orvig C (1993) The Aqueous Coordination Chemistry of Aluminum. In: Robinson HG (ed) Coordination Chemistry of Aluminum, VCH, Weinheim, pp 85–121Google Scholar
  7. Dayde, S, Champmartin, D, Rubini, P, Berthon, G 2002Inorg Chim Acta339513CrossRefGoogle Scholar
  8. Kiss, E, Lakatos, E, Banyai, I, Kiss, T 1998J Inorg Biochem69145CrossRefGoogle Scholar
  9. Dayde, S, Brumas, V, Champmartin, D, Rubini, P, Berthon, G 2003J Inorg Biochem17104CrossRefGoogle Scholar
  10. Yang, X, Tang, Y, Bi, S, Yang, G, Hu, J 2003Anal Sci19133CrossRefGoogle Scholar
  11. Kiss T, Sovago I, Toth I, Lakatos A, Bertani P, Tapparo A, Bombi G, Bruce Martin R (1997) JCS Dalton Trans 1967Google Scholar
  12. Laurie S (1987) Amino Acids, Peptides and Proteins. In: Wilkinson G, Gillard DR, McCleverty AJ (Eds) Coordination Chemistry, Pergamon Press, Oxford pp 739–776; Jakubke DH, Jeshkeit H (1982) Aminosauren, Peptide, Proteine, Akademie Verlag, Berlin; Van der Voet BG (1992) Aluminum in Biology and Medicine, Ciba Foundation Symposium 169. Wiley, Chichester, pp 109–122Google Scholar
  13. Charlet, Ph, Deloume, PJ, Duc, G, Thomas-David, G 1984Bull Soc Chim Fr7–8222Google Scholar
  14. Gans, P, Sabatini, A, Vacca, A 1996Talanta431739CrossRefGoogle Scholar
  15. Gans P, Sabatini A, Vacca A (1985) J Chem Soc Dalton Trans 1195Google Scholar
  16. Dayde S (1990) Etude des equilibres de complexation et speciation simulee de la fraction ultrafiltrable de l’aluminium dans le plasma sanguine et la fluide gastro-intestinal. Implications pour la toxicite de l’aluminium. These de Doctorat de l’Universite Paul Sabatier, Toulouse, FranceGoogle Scholar
  17. Djurdjevic, P, Jelic, R, Dzajevic, D, Cvijovic, M 2002Metal Based Drugs8235Google Scholar
  18. Djurdjevic, P, Jelic, R 1998Main Group Metal Chem21331Google Scholar
  19. Puigdomenech I (1983) Input, Sed and Predom: Computer programs drawing equilibrium diagrams, Technical report TRITA-OOK-3010. Royal Institute of Technology, Dept Inorg Chem StockholmGoogle Scholar
  20. Akitt, WJ 1989Prog Nucl Mag Res Spectr211CrossRefGoogle Scholar
  21. Tossell AJ (2001) Geochim Cosmochim Acta 65: 2549; Bertsch PM, Parker RD (1996) Aqueous Polynuclear Aluminum Species. In: Sposito G (ed) The Environmental Chemistry of Aluminum, Lewis Publ., Boca Raton, 2nd Edition, pp 117–168Google Scholar
  22. Perry, K, Shafran, L 2001J Inorg Biochem87115CrossRefGoogle Scholar
  23. Ohman, OL, Sjoberg, S 1996Coord Chem Rev14933CrossRefGoogle Scholar
  24. Karweer BS, Pillai PB, Iyer KR (1990) Magnetic Res Chem 28: 922; Karweer BS, Pillai PB, Iyer KR, Indian J Chem 30A: 1064Google Scholar
  25. Bellamy JL (1975) The Infrared Spectra of Complex Molecules, Vol 1, Chapman and Hall, London, pp 266, 273; Barth A (2000) Prog Biophys Mol Biol 74: 141Google Scholar
  26. Schmidbaur H, Bach I, Wilkinson LD, Muller G (1989) Chem Ber 122: 1445; Schmidbaur H, Muller G, Riede J, Manninger G, Helbig J (1986) Angew Chem Int Ed 25: 1013Google Scholar
  27. Singhal A, Keefer DK (1994) J Mater Res 9: 1973; Ohman OL, Sjoberg S, Ingri N (1983) Acta Chem Scand Ser A 37: 561; Hedlund T, Sjoberg S, Ohman OL (1987) Acta Chem Scand Ser A 41: 197Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Predrag Djurdjević
    • 1
  • Ratomir Jelić
    • 1
  • Ljubinka Joksović
    • 1
  • Mirjana Cvijović
    • 2
  1. 1.Faculty of Science, Chemistry DepartmentKragujevac
  2. 2.The Copper Mill, Sevojno-Uzice, State Union of Serbia and MontenegroYugoslavia (Former)

Personalised recommendations