Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Isolation and genomic characterization of a new mimivirus of lineage B from a Brazilian river


Since its discovery, the first identified giant virus associated with amoebae, Acanthamoeba polyphaga mimivirus (APMV), has been rigorously studied to understand the structural and genomic complexity of this virus. In this work, we report the isolation and genomic characterization of a new mimivirus of lineage B, named “Borely moumouvirus”. This new virus exhibits a structure and replicative cycle similar to those of other members of the family Mimiviridae. The genome of the new isolate is a linear double-strand DNA molecule of ~1.0 Mb, containing over 900 open reading frames. Genome annotation highlighted different translation system components encoded in the DNA of Borely moumouvirus, including aminoacyl-tRNA synthetases, translation factors, and tRNA molecules, in a distribution similar to that in other lineage B mimiviruses. Pan-genome analysis indicated an increase in the genetic arsenal of this group of viruses, showing that the family Mimiviridae is still expanding. Furthermore, phylogenetic analysis has shown that Borely moumouvirus is closely related to moumouvirus australiensis. This is the first mimivirus lineage B isolated from Brazilian territory to be characterized. Further prospecting studies are necessary for us to better understand the diversity of these viruses so a better classification system can be established.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    La Scola B, Audic S, Robert C et al (2003) A giant virus in amoebae. Science (80-) 299:2033.

  2. 2.

    Raoult D, Audic S, Robert C et al (2004) The 1.2-Megabase genome sequence of Mimivirus. Science (80-) 306:1344–1350.

  3. 3.

    Xiao C, Kuznetso YG, Sun S et al (2009) Structural studies of the giant Mimivirus. PLoS Biol 7:0958–0966.

  4. 4.

    Zauberman N, Mutsafi Y, Ben Halevy D et al (2008) Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus. PLoS Biol 6:1104–1114.

  5. 5.

    Aherfi S, Colson P, La Scola B, Raoult D (2016) Giant viruses of amoebas: an update. Front Microbiol 7:1–14.

  6. 6.

    Andrade ACDSP, Arantes TS, Rodrigues RAL et al (2018) Ubiquitous giants: a plethora of giant viruses found in Brazil and Antarctica. Virol J 15:1–10.

  7. 7.

    Mihara T, Koyano H, Hingamp P et al (2018) Taxon richness of “Megaviridae” exceeds those of bacteria and archaea in the ocean. Microbes Environ.

  8. 8.

    Schulz F, Alteio L, Goudeau D et al (2018) Hidden diversity of soil giant viruses. Nat Commun.

  9. 9.

    Schulz F, Yutin N, Ivanova NN et al (2017) Giant viruses with an expanded complement of translation system components. Science (80-) 356:82–85.

  10. 10.

    Arslan D, Legendre M, Seltzer V et al (2011) Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci 108:17486–17491.

  11. 11.

    Yoosuf N, Yutin N, Colson P et al (2012) Related giant viruses in distant locations and different habitats: Acanthamoeba polyphaga moumouvirus represents a third lineage of the Mimiviridae that is close to the Megavirus lineage. Genome Biol Evol 4:1324–1330.

  12. 12.

    Dornas FP, Khalil JYB, Pagnier I et al (2015) Isolation of new Brazilian giant viruses from environmental samples using a panel of protozoa. Front Microbiol 6:1–9.

  13. 13.

    Abrahão J, Silva L, Silva LS et al (2018) Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat Commun 9:749.

  14. 14.

    dos Andrade ACSP, Rodrigues RAL, Oliveira GP, RAL, Oliveira GP et al (2017) Filling knowledge gaps for mimivirus entry, uncoating, and morphogenesis. J Virol 91:e01335-17.

  15. 15.

    Chelikani V, Ranjan T, Kondabagil K (2014) Revisiting the genome packaging in viruses with lessons from the “Giants”. Virology 466–467:15–26.

  16. 16.

    Rodrigues RAL, Arantes TS, Oliveira GP et al (2019) The complex nature of tupanviruses. Adv Virus Res 103:135–166.

  17. 17.

    Sandegren L, Sjöberg BM (2007) Self-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth state of the infected bacterium. J Bacteriol 189:980–990.

  18. 18.

    Nishida K, Suzuki S, Kimura Y et al (1998) Group I introns found in chlorella viruses: biological implications. Virology 242:319–326.

  19. 19.

    Yamada T, Tamura K, Aimi T, Songsri P (1994) Self-splicing group I introns in eukaryotic viruses. Nucleic Acids Res 22:2532–2537.

  20. 20.

    Rodrigues RAL, Mougari S, Colson P et al (2019) “Tupanvirus”, a new genus in the family Mimiviridae. Arch Virol 164:325–331.

  21. 21.

    Bajrai LH, de Assis FL, Azhar EI et al (2016) Saudi moumouvirus, the first group B mimivirus isolated from Asia. Front Microbiol 7:2029.

  22. 22.

    Westrich JA, Warren CJ, Pyeon D (2017) Evasion of host immune defenses by human papillomavirus. Virus Res.

  23. 23.

    Radke JR, Cook JL (2018) Human adenovirus infections: update and consideration of mechanisms of viral persistence. Curr Opin Infect, Dis

  24. 24.

    Boyer M, Madoui MA, Gimenez G et al (2010) Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS One.

  25. 25.

    Colson P, Levasseur A, La Scola B et al (2018) Ancestrality and mosaicism of giant viruses supporting the definition of the fourth TRUC of microbes. Front Microbiol.

  26. 26.

    Nasir A, Kim KM, Caetano-Anolles G (2012) Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol 12:156.

  27. 27.

    Yutin N, Wolf YI, Koonin EV (2014) Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology 466–467:38–52.

  28. 28.

    Moreira D, López-garcía P (2009) Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol 7:306–311.

  29. 29.

    Guglielmini J, Woo A, Krupovic M et al (2019) Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc Natl Acad Sci USA.

  30. 30.

    Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am Jounal Hyg 27:493–497.

  31. 31.

    Besemer J (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618.

  32. 32.

    Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16.

  33. 33.

    Götz S, García-Gómez JM, Terol J et al (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435.

  34. 34.

    Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403.

  35. 35.

    Rodriguez-R LM, Konstantinidis KT (2014) Bypassing Cultivation To Identify Bacterial Species. Microbe Mag 9:111–118.

  36. 36.

    Lechner M, Findeiß S, Steiner L et al (2011) Proteinortho: detection of (Co-)orthologs in large-scale analysis. BMC Bioinform.

  37. 37.

    Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform.

  38. 38.

    Nguyen L, Schmidt HA, Von Haeseler A, Minh BQ (2014) IQ-TREE : a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274.

  39. 39.

    Kumar S, Stecher G, Li M et al (2018) MEGA X : molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549.

Download references


We are grateful to our colleagues from Laboratório de Vírus of Universidade Federal de Minas Gerais. In addition, we thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FAPEMIG (Fundação de Amparo à Pesquisa do estado de Minas Gerais), Ministério da Saúde (MS-DECIT) and the Microscopy Center of UFMG. J.S.A is a CNPq researcher. B.L.S. and J.S.A. are members of a CAPES-COFECUB project.

Author information

Correspondence to Bernard La Scola or Jônatas Santos Abrahão.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Marc H. V. Van Regenmortel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dos Santos Silva, L.K., Rodrigues, R.A.L., dos Santos Pereira Andrade, A.C. et al. Isolation and genomic characterization of a new mimivirus of lineage B from a Brazilian river. Arch Virol (2020).

Download citation