Advertisement

Different types of adjuvants in prophylactic and therapeutic human papillomavirus vaccines in laboratory animals: a systematic review

  • Tahoora Mousavi
  • Sogol Sattari Saravi
  • Reza Valadan
  • Mohammad Reza Haghshenas
  • Alireza RafieiEmail author
  • Hamed Jafarpour
  • Amir Shamshirian
Review
  • 39 Downloads

Abstract

Human papillomavirus (HPV) causes cervical carcinoma, which and is the third most common cancer, accounting for 275,000 deaths annually worldwide. Adjuvants have a key role in promotion of vaccine efficacy; therefore, using prophylactic and therapeutic vaccines combined with adjuvant could be of great benefit in prevention and treatment of cervical cancer. There are different types of adjuvants, including MF59TM adjuvants, RNA-based, JY (interleukin2/chitosan), cholera toxin (CT), heat-labile enterotoxin (LT), Freund’s adjuvant, alum, SA-4-1BBL, λ-carrageenan (λ-CGN), heat shock proteins (HSPs), juzen-taiho-to (JTT) and hochu-ekki-to (HET), ISCOM and ISCOMATRIX™, very small size proteoliposomes (VSSPs), granulocyte macrophage colony-stimulating factor (GM-CSF), and Toll-like receptors (TLRs). Adjuvants have various functions, especially in therapeutic vaccines, and they lead to an increase in cytotoxic T lymphocytes (CTLs), so they are important in the design of vaccines. Here, we review the currently used adjuvants and their combinations with HPV protein vaccines in order to introduce an appropriate adjuvant for HPV vaccines.

Notes

Compliance with ethical standards

Conflict of interest

There is no conflict of interest to declare.

Supplementary material

705_2019_4479_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 40 kb)

References

  1. 1.
    Bosch F, Lorincz A, Munoz N, Meijer C, Shah K (2002) The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55(4):244–265PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Haghshenas MR, Mousavi T, Kheradmand M, Afshari M, Moosazadeh M (2017) Efficacy of human papillomavirus l1 protein vaccines (cervarix and gardasil) in reducing the risk of cervical intraepithelial neoplasia: a meta-analysis. Int J Prev Med 8:14CrossRefGoogle Scholar
  4. 4.
    Amarakoon AGU, Daulagala S, Fathima F (2016) An overview of human papilloma virus. World Sci News 3(53):275–308Google Scholar
  5. 5.
    Yang A, Farmer E, Wu T, Hung C-F (2016) Perspectives for therapeutic HPV vaccine development. J Biomed Sci 23(1):75PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Haghshenas MR, Mousavi T, Moosazadeh M, Afshari M (2016) Human papillomavirus and breast cancer in Iran: a meta-analysis. Iran J Basic Med Sci 19(3):231PubMedPubMedCentralGoogle Scholar
  7. 7.
    Niazy F, Rostami K, Motabar AR (2015) Giant condyloma acuminatum of vulva frustrating treatment challenge. World J Plast Surg 4(2):159PubMedPubMedCentralGoogle Scholar
  8. 8.
    Landy R, Windridge P, Gillman MS, Sasieni PD (2018) What cervical screening is appropriate for women who have been vaccinated against high risk HPV? A simulation study. Int J Cancer 142(4):709–718PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Moscicki A-B (2007) HPV infections in adolescents. Dis Mark 23(4):229–234CrossRefGoogle Scholar
  10. 10.
    Wang HL, Xu H, Lu WH, Zhu L, Yu YH, Hong FZ (2014) In vitro and in vivo evaluations of human papillomavirus type 16 (HPV16)-derived peptide-loaded dendritic cells (DCs) with a CpG oligodeoxynucleotide (CpG-ODN) adjuvant as tumor vaccines for immunotherapy of cervical cancer. Arch Gynecol Obstet 289(1):155–162PubMedCrossRefGoogle Scholar
  11. 11.
    Bhatla N, Suri V, Basu P, Shastri S, Datta SK, Bi D et al (2010) Immunogenicity and safety of human papillomavirus-16/18 AS04-adjuvanted cervical cancer vaccine in healthy Indian women. J Obstet Gynaecol Res 36(1):123–132PubMedCrossRefGoogle Scholar
  12. 12.
    Bosch FX, de Sanjosé S (2007) The epidemiology of human papillomavirus infection and cervical cancer. Dis Mark 23(4):213–227CrossRefGoogle Scholar
  13. 13.
    Cui Z, Huang L (2005) Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for protein-based vaccines: therapeutic effect against cervical cancer. Cancer Immunol Immunother 54(12):1180–1190PubMedCrossRefGoogle Scholar
  14. 14.
    Frazer IH (2010) Cervical cancer vaccine development. Sex Health 7(3):230–234PubMedCrossRefGoogle Scholar
  15. 15.
    Gherardi RK, Aouizerate J, Cadusseau J, Yara S, Authier FJ (2016) Aluminum adjuvants of vaccines injected into the muscle: normal fate, pathology and associated disease. Morphologie bulletin de l’Association des anatomistes 100(329):85–94PubMedGoogle Scholar
  16. 16.
    Joura EA, Giuliano AR, Iversen O-E, Bouchard C, Mao C, Mehlsen J et al (2015) A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med 372(8):711–723PubMedCrossRefGoogle Scholar
  17. 17.
    de Cassan SC, Forbes EK, Douglas AD, Milicic A, Singh B, Gupta P et al (2011) The requirement for potent adjuvants to enhance the immunogenicity and protective efficacy of protein vaccines can be overcome by prior immunization with a recombinant adenovirus. J Immunol (Baltimore, Md: 1950) 187(5):2602–2616CrossRefGoogle Scholar
  18. 18.
    Goodman AL, Draper SJ (2010) Blood-stage malaria vaccines—recent progress and future challenges. Ann Trop Med Parasitol 104(3):189–211PubMedCrossRefGoogle Scholar
  19. 19.
    Israeli E, Agmon-Levin N, Blank M, Shoenfeld Y (2009) Adjuvants and autoimmunity. Lupus 18(13):1217–1225PubMedCrossRefGoogle Scholar
  20. 20.
    Gellin BG, Salisbury DM (2015) Communicating the role and value of vaccine adjuvants. Vaccine 33(Suppl 2):B44–B46PubMedCrossRefGoogle Scholar
  21. 21.
    Seder R, Reed SG, O’Hagan D, Malyala P, D’Oro U, Laera D et al (2015) Gaps in knowledge and prospects for research of adjuvanted vaccines. Vaccine 33(Suppl 2):B40–B43PubMedCrossRefGoogle Scholar
  22. 22.
    Kashiwagi S, Brauns T, Gelfand J, Poznansky MC (2014) Laser vaccine adjuvants. History, progress, and potential. Hum Vaccines Immunother 10(7):1892–1907CrossRefGoogle Scholar
  23. 23.
    Vandenbroucke JP, Von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ et al (2007) Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. PLoS Med 4(10):e297PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Li Y, Xu XL, Zhao D, Pan LN, Huang CW, Guo LJ et al (2015) TLR 3 ligand poly IC attenuates reactive astrogliosis and improves recovery of rats after focal cerebral ischemia. CNS Neurosci Ther 21(11):905–913PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wick DA, Martin SD, Nelson BH, Webb JR (2011) Profound CD8 + T cell immunity elicited by sequential daily immunization with exogenous antigen plus the TLR3 agonist poly (I: C). Vaccine 29(5):984–993PubMedCrossRefGoogle Scholar
  26. 26.
    Yang X, Cheng Y, Li C (2017) The role of TLRs in cervical cancer with HPV infection: a review. Signal Transduct Target Ther 2:17055PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Khong H, Overwijk WW (2016) Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 4(1):56PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bates JT, Uematsu S, Akira S, Mizel SB (2009) Direct stimulation of tlr5 +/+ CD11c + cells is necessary for the adjuvant activity of flagellin. J Immunol 182(12):7539–7547PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Cui B, Liu X, Fang Y, Zhou P, Zhang Y, Wang Y (2018) Flagellin as a vaccine adjuvant. Expert Rev Vaccines 17(4):335–349PubMedCrossRefGoogle Scholar
  30. 30.
    Smits EL, Ponsaerts P, Berneman ZN, Van Tendeloo VF (2008) The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 13(8):859–875PubMedCrossRefGoogle Scholar
  31. 31.
    Dockrell D, Kinghorn G (2001) Imiquimod and resiquimod as novel immunomodulators. J Antimicrob Chemother 48(6):751–755PubMedCrossRefGoogle Scholar
  32. 32.
    Levy O, Goriely S, Kollmann TR (2013) Immune response to vaccine adjuvants during the first year of life. Vaccine 31(21):2500–2505PubMedCrossRefGoogle Scholar
  33. 33.
    Arany I, Tyring SK, Stanley MA, Tomai MA, Miller RL, Smith MH et al (1999) Enhancement of the innate and cellular immune response in patients with genital warts treated with topical imiquimod cream 5%. Antivir Res 43(1):55–63PubMedCrossRefGoogle Scholar
  34. 34.
    Khong H, Overwijk WW (2016) Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 4:56PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hartoonian C, Ebtekar M, Soleimanjahi H, Karami A, Mahdavi M, Rastgoo N et al (2009) Effect of immunological adjuvants: GM-CSF (granulocyte-monocyte colony stimulating factor) and IL-23 (interleukin-23) on immune responses generated against hepatitis C virus core DNA vaccine. Cytokine 46(1):43–50PubMedCrossRefGoogle Scholar
  36. 36.
    Tang J, Yin R, Tian Y, Huang Z, Shi J, Fu X et al (2012) A novel self-assembled nanoparticle vaccine with HIV-1 Tat49-57/HPV16 E749-57 fusion peptide and GM-CSF DNA elicits potent and prolonged CD8+ T cell-dependent anti-tumor immunity in mice. Vaccine 30(6):1071–1082PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Venier C, Guthmann M, Fernandez L, Fainboim L (2007) Innate-immunity cytokines induced by very small size proteoliposomes, a Neisseria-derived immunological adjuvant. Clin Exp Immunol 147(2):379–388PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Torréns I, Mendoza O, Batte A, Reyes O, Fernández LE, Mesa C et al (2005) Immunotherapy with CTL peptide and VSSP eradicated established human papillomavirus (HPV) type 16 E7-expressing tumors. Vaccine 23(50):5768–5774PubMedCrossRefGoogle Scholar
  39. 39.
    Sun H-X, Xie Y, Ye Y-P (2009) ISCOMs and ISCOMATRIX™. Vaccine 27(33):4388–4401PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Sanders MT, Brown LE, Deliyannis G, Pearse MJ (2005) ISCOMTM-based vaccines: the second decade. Immunol Cell Biol 83(2):119–128PubMedCrossRefGoogle Scholar
  41. 41.
    Manfredi F, di Bonito P, Ridolfi B, Anticoli S, Arenaccio C, Chiozzini C et al (2016) The CD8+ T cell-mediated immunity induced by HPV-E6 uploaded in engineered exosomes is improved by ISCOMATRIXTM adjuvant. Vaccines 4(4):42PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Peng S, Wang JW, Karanam B, Wang C, Huh WK, Alvarez RD et al (2015) Sequential cisplatin therapy and vaccination with HPV16 E6E7L2 fusion protein in saponin adjuvant GPI-0100 for the treatment of a model HPV16+ cancer. PLoS One 10(1):e116389PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Tsuchiya M, Kono H, Matsuda M, Fujii H, Rusyn I (2008) Protective effect of Juzen-taiho-to on hepatocarcinogenesis is mediated through the inhibition of Kupffer cell-induced oxidative stress. Int J Cancer 123(11):2503–2511PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Cho J, Sato N, Kikuchi K (1991) Prophylactic anti-tumor effect of Hochu-ekki-to (TJ41) by enhancing natural killer cell activity. In vivo (Athens, Greece) 5(4):389–391Google Scholar
  45. 45.
    Taguchi A, Kawana K, Yokoyama T, Adachi K, Yamashita A, Tomio K et al (2012) Adjuvant effect of Japanese herbal medicines on the mucosal type 1 immune responses to human papillomavirus (HPV) E7 in mice immunized orally with Lactobacillus-based therapeutic HPV vaccine in a synergistic manner. Vaccine 30(36):5368–5372PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Lin K, Roosinovich E, Ma B, Hung C-F, Wu T-C (2010) Therapeutic HPV DNA vaccines. Immunol Res 47(1–3):86–112PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mohit E, Bolhassani A, Zahedifard F, Taslimi Y, Rafati S (2012) The Contribution of NT-gp96 as an adjuvant for increasing HPV16 E7-specific immunity in C57BL/6 mouse model. Scand J Immunol 75(1):27–37PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zong J, Wang C, Liu B, Liu M, Cao Y, Sun X et al (2013) Human hsp70 and HPV16 oE7 fusion protein vaccine induces an effective antitumor efficacy. Oncol Rep 30(1):407–412PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Weiner ML (2014) Food additive carrageenan: part II: a critical review of carrageenan in vivo safety studies. Crit Rev Toxicol 44(3):244–269PubMedCrossRefGoogle Scholar
  50. 50.
    Bhattacharyya S, Liu H, Zhang Z, Jam M, Dudeja PK, Michel G et al (2010) Carrageenan-induced innate immune response is modified by enzymes that hydrolyze distinct galactosidic bonds. J Nutr Biochem 21(10):906–913PubMedCrossRefGoogle Scholar
  51. 51.
    Li J, Aipire A, Li J, Zhu H, Wang Y, Guo W et al (2017) λ-Carrageenan improves the antitumor effect of dendritic cell based vaccine. Oncotarget 8(18):29996PubMedPubMedCentralGoogle Scholar
  52. 52.
    Sharma RK, Yolcu ES, Shirwan H (2014) SA-4-1BBL as a novel adjuvant for the development of therapeutic cancer vaccines. Expert Rev Vaccines 13(3):387–398PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Srivastava AK, Dinc G, Sharma RK, Yolcu ES, Zhao H, Shirwan H (2014) SA-4-1BBL and monophosphoryl lipid A constitute an efficacious combination adjuvant for cancer vaccines. Cancer Res 74(22):6441–6451PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Koutsky LA, Harper DM (2006) Current findings from prophylactic HPV vaccine trials. Vaccine 24:S114–S121CrossRefGoogle Scholar
  55. 55.
    Sharma C, Dey B, Wahiduzzaman M, Singh N (2012) Human papillomavirus 16 L1–E7 chimeric virus like particles show prophylactic and therapeutic efficacy in murine model of cervical cancer. Vaccine 30(36):5417–5424PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Wu W-H, Alkutkar T, Karanam B, Roden RB, Ketner G, Ibeanu OA (2015) Capsid display of a conserved human papillomavirus L2 peptide in the adenovirus 5 hexon protein: a candidate prophylactic hpv vaccine approach. Virol J 12(1):140PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, Offringa R, van der Burg SH (2007) CD8 + CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol 179(8):5033–5040PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Badaracco G, Venuti A (2007) Human papillomavirus therapeutic vaccines in head and neck tumors. Expert Rev Anticancer Ther 7(5):753–766PubMedCrossRefGoogle Scholar
  59. 59.
    Daftarian P, Mansour M, Benoit AC, Pohajdak B, Hoskin DW, Brown RG et al (2006) Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion. Vaccine 24(24):5235–5244PubMedCrossRefGoogle Scholar
  60. 60.
    Monroy-García A, Gómez-Lim MA, Weiss-Steider B, Hernández-Montes J, Huerta-Yepez S, Rangel-Santiago JF et al (2014) Immunization with an HPV-16 L1-based chimeric virus-like particle containing HPV-16 E6 and E7 epitopes elicits long-lasting prophylactic and therapeutic efficacy in an HPV-16 tumor mice model. Arch Virol 159(2):291–305PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ryan EJ, Daly LM, Mills KH (2001) Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol 19(8):293–304PubMedCrossRefGoogle Scholar
  62. 62.
    Xu Y, Zhang H, Xu X (2008) Enhancement of vaccine potency by fusing modified LTK63 into human papillomavirus type 16 chimeric virus-like particles. FEMS Immunol Med Microbiol 52(1):99–109PubMedCrossRefGoogle Scholar
  63. 63.
    Da Hora VP, Conceição FR, Dellagostin OA, Doolan DL (2011) Non-toxic derivatives of LT as potent adjuvants. Vaccine 29(8):1538–1544PubMedCrossRefGoogle Scholar
  64. 64.
    Brunner R, Jensen-Jarolim E, Pali-Schöll I (2010) The ABC of clinical and experimental adjuvants—a brief overview. Immunol Lett 128(1):29–35PubMedCrossRefGoogle Scholar
  65. 65.
    Jee J, Bonnegarde-Bernard A, Duverger A, Iwakura Y, Cormet-Boyaka E, Martin TL et al (2015) Neutrophils negatively regulate induction of mucosal IgA responses after sublingual immunization. Mucosal Immunol 8(4):735PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Manuri PR, Nehete B, Nehete PN, Reisenauer R, Wardell S, Courtney AN et al (2007) Intranasal immunization with synthetic peptides corresponding to the E6 and E7 oncoproteins of human papillomavirus type 16 induces systemic and mucosal cellular immune responses and tumor protection. Vaccine 25(17):3302–3310PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Xu J, Li S, Wang X, Liu J, Shan P, Zhou Y et al (2018) Systemic and mucosal humoral immune responses induced by the JY-adjuvanted nasal spray H7N9 vaccine in mice. Emerg Microbes Infect 7(1):1–9CrossRefGoogle Scholar
  68. 68.
    Hua Y, Jiao Y-Y, Ma Y, Peng X-L, Fu Y-H, Zheng Y-P et al (2016) DNA vaccine encoding central conserved region of G protein induces Th1 predominant immune response and protection from RSV infection in mice. Immunol Lett 179:95–101PubMedCrossRefGoogle Scholar
  69. 69.
    Tafaghodi M, Saluja V, Kersten GF, Kraan H, Slütter B, Amorij J-P et al (2012) Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: impact of formulation on physicochemical and immunological characteristics. Vaccine 30(36):5341–5348PubMedCrossRefGoogle Scholar
  70. 70.
    Ma F, Zhang Q, Zheng L (2015) Interleukin/chitosan (JY) adjuvant enhances the mucosal immunity of human papillomavirus 16 L1 virus-like particles in mice. Biotechnol Lett 37(4):773–777PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Heidenreich R, Jasny E, Kowalczyk A, Lutz J, Probst J, Baumhof P et al (2015) A novel RNA-based adjuvant combines strong immunostimulatory capacities with a favorable safety profile. Int J Cancer 137(2):372–384PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Lundstrom K (2018) Latest development on RNA-based drugs and vaccines. Future Sci OA 4(5):FSO300PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A et al (2012) Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One 7(8):e43031PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Circelli L, Petrizzo A, Tagliamonte M, Heidenreich R, Tornesello ML, Buonaguro FM et al (2017) Immunological effects of a novel RNA-based adjuvant in liver cancer patients. Cancer Immunol Immunother 66(1):103–112PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Sahly HE (2010) MF59™ as a vaccine adjuvant: a review of safety and immunogenicity. Expert Rev Vaccines 9(10):1135–1141PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Zhu X, Tommasino M, Vousden K, Sadovnikava E, Rappuoli R, Crawford L et al (1995) Both immunization with protein and recombinant vaccinia virus can stimulate CTL specific for the E7 protein of human papilloma virus 16 in H-2d mice. Scand J Immunol 42(5):557–563PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Aguilar J, Rodriguez E (2007) Vaccine adjuvants revisited. Vaccine 25(19):3752–3762PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lee SE, Hong SH, Verma V, Lee YS, Duong T-MN, Jeong K et al (2016) Flagellin is a strong vaginal adjuvant of a therapeutic vaccine for genital cancer. Oncoimmunology 5(2):e1081328PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Kuroda E, Ishii KJ, Uematsu S, Ohata K, Coban C, Akira S et al (2011) Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity 34(4):514–526PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ackerman AL, Cresswell P (2004) Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 5(7):678PubMedCrossRefGoogle Scholar
  81. 81.
    Spickler AR, Roth JA (2003) Adjuvants in veterinary vaccines: modes of action and adverse effects. J Vet Intern Med 17(3):273–281PubMedCrossRefGoogle Scholar
  82. 82.
    Combita A-L, Touzé A, Bousarghin L, Christensen ND, Coursaget P (2002) Identification of two cross-neutralizing linear epitopes within the L1 major capsid protein of human papillomaviruses. J Virol 76(13):6480–6486PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    White WI, Wilson SD, Palmer-Hill FJ, Woods RM, Ghim S-J, Hewitt LA et al (1999) Characterization of a major neutralizing epitope on human papillomavirus type 16 L1. J Virol 73(6):4882–4889PubMedPubMedCentralGoogle Scholar
  84. 84.
    Fukui A, Matsueda S, Kawano K, Tsuda N, Komatsu N, Shichijo S et al (2012) Identification of B cell epitopes reactive to human papillomavirus type-16L1-derived peptides. Virol J 9:199PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wu WH, Alkutkar T, Karanam B, Roden RB, Ketner G, Ibeanu OA (2015) Capsid display of a conserved human papillomavirus L2 peptide in the adenovirus 5 hexon protein: a candidate prophylactic hpv vaccine approach. Virol J 12:140PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Senger T, Schädlich L, Textor S, Klein C, Michael KM, Buck CB et al (2010) Virus-like particles and capsomeres are potent vaccines against cutaneous alpha HPVs. Vaccine 28(6):1583–1593PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Tobery TW, Smith JF, Kuklin N, Skulsky D, Ackerson C, Huang L et al (2003) Effect of vaccine delivery system on the induction of HPV16L1-specific humoral and cell-mediated immune responses in immunized rhesus macaques. Vaccine 21(13):1539–1547PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Seitz H, Ribeiro-Müller L, Canali E, Bolchi A, Tommasino M, Ottonello S et al (2015) Robust in vitro and in vivo neutralization against multiple high-risk HPV types induced by a thermostable thioredoxin-L2 vaccine. Cancer Prev Res 8(10):932–941CrossRefGoogle Scholar
  89. 89.
    Hassett KJ, Meinerz NM, Semmelmann F, Cousins MC, Garcea RL, Randolph TW (2015) Development of a highly thermostable, adjuvanted human papillomavirus vaccine. Eur J Pharm Biopharm 94:220–228PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    De Bruijn ML, Greenstone HL, Vermeulen H, Melief CJ, Lowy DR, Schiller JT et al (1998) L1-specific protection from tumor challenge elicited by HPV16 virus-like particles. Virology 250(2):371–376PubMedCrossRefGoogle Scholar
  91. 91.
    Xu W-X, Wang J, Tang H-P, He Y-P, Zhu Q-X, Gupta SK et al (2016) Epitomics: IgG-epitome decoding of E6, E7 and L1 proteins from oncogenic human papillomavirus type 58. Sci Rep 6:34686PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Slupetzky K, Gambhira R, Culp TD, Shafti-Keramat S, Schellenbacher C, Christensen ND et al (2007) A papillomavirus-like particle (VLP) vaccine displaying HPV16 L2 epitopes induces cross-neutralizing antibodies to HPV11. Vaccine 25(11):2001–2010PubMedCrossRefGoogle Scholar
  93. 93.
    Hagensee ME, Carter JJ, Wipf GC, Galloway DA (1995) Immunization of mice with HPV vaccinia virus recombinants generates serum IgG, IgM, and mucosal IgA antibodies. Virology 206(1):174–182PubMedCrossRefGoogle Scholar
  94. 94.
    Qin Y, Wang X, Cui H, Cheung Y, Hu M, Zhu S et al (2005) Human papillomavirus type 16 E7 peptide38–61 linked with an immunoglobulin G fragment provides protective immunity in mice. Gynecol Oncol 96(2):475–483PubMedCrossRefGoogle Scholar
  95. 95.
    Korsholm KS, Hansen J, Karlsen K, Filskov J, Mikkelsen M, Lindenstrøm T et al (2014) Induction of CD8+ T-cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant. Vaccine 32(31):3927–3935PubMedCrossRefGoogle Scholar
  96. 96.
    Greer CE, Petracca R, Buonamassa DT, Di Tommaso A, Gervase B, Reeve RL et al (2000) The comparison of the effect of LTR72 and MF59 adjuvants on mouse humoral response to intranasal immunisation with human papillomavirus type 6b (HPV-6b) virus-like particles. Vaccine 19(9–10):1008–1012PubMedCrossRefGoogle Scholar
  97. 97.
    Liu C, Chu X, Sun P, Feng X, Huang W, Liu H, Ma Y (2018) Synergy effects of Polyinosinic-polycytidylic acid, CpG oligodeoxynucleotide, and cationic peptides to adjuvant HPV E7 epitope vaccine through preventive and therapeutic immunization in a TC-1 grafted mouse model. Hum Vaccines Immunother 7(3):931–940CrossRefGoogle Scholar
  98. 98.
    Freyschmidt E-J, Alonso A, Hartmann G, Gissmann L (2004) Activation of dendritic cells and induction of T cell responses by HPV 16 L1/E7 chimeric virus-like particles are enhanced by CpG ODN or sorbitol. Antivir Ther 9:479–490PubMedGoogle Scholar
  99. 99.
    Ye GW, Park J-B, Park Y-J, Choi YS, Sin J-I (2007) Increased sensitivity of radiated murine cervical cancer tumors to E7 subunit vaccine-driven CTL-mediated killing induces synergistic anti-tumor activity. Mol Ther 15(8):1564–1570PubMedCrossRefGoogle Scholar
  100. 100.
    Welters MJ, Filippov DV, van den Eeden SJ, Franken KL, Nouta J, Valentijn ARP et al (2004) Chemically synthesized protein as tumour-specific vaccine: immunogenicity and efficacy of synthetic HPV16 E7 in the TC-1 mouse tumour model. Vaccine 23(3):305–311PubMedCrossRefGoogle Scholar
  101. 101.
    Kim TG, Kim CH, Won EH, Bae SM, Ahn WS, Park JB et al (2004) CpG-ODN-stimulated dendritic cells act as a potent adjuvant for E7 protein delivery to induce antigen-specific antitumour immunity in a HPV 16 E7-associated animal tumour model. Immunology 112(1):117–125PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Reiniš M, Šímová J, Bubeník J (2006) Inhibitory effects of unmethylated CpG oligodeoxynucleotides on MHC class I-deficient and-proficient HPV16-associated tumours. Int J Cancer 118(7):1836–1842PubMedCrossRefGoogle Scholar
  103. 103.
    Song Y-C, Cheng H-Y, Leng C-H, Chiang S-K, Lin C-W, Chong P et al (2014) A novel emulsion-type adjuvant containing CpG oligodeoxynucleotides enhances CD8+ T-cell-mediated anti-tumor immunity. J Control Release 173:158–165PubMedCrossRefGoogle Scholar
  104. 104.
    Song L, Yang M-C, Knoff J, Wu T-C, Hung C-F (2014) Cancer immunotherapy employing an innovative strategy to enhance CD4+ T cell help in the tumor microenvironment. PLoS One 9(12):e115711PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Liao S, Zhang W, Hu X, Wang W, Deng D, Wang H et al (2015) A novel “priming-boosting” strategy for immune interventions in cervical cancer. Mol Immunol 64(2):295–305PubMedCrossRefGoogle Scholar
  106. 106.
    Domingos-Pereira S, Decrausaz L, Derré L, Bobst M, Romero P, Schiller JT et al (2013) Intravaginal TLR agonists increase local vaccine-specific CD8 T cells and human papillomavirus-associated genital-tumor regression in mice. Mucosal Immunol 6(2):393PubMedCrossRefGoogle Scholar
  107. 107.
    Gomes AC, Flace A, Saudan P, Zabel F, Cabral-Miranda G, Turabi AE et al (2017) Adjusted particle size eliminates the need of linkage of antigen and adjuvants for appropriated T cell responses in virus-like particle-based vaccines. Front Immunol 8:226PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kang TH, Monie A, Wu LS-F, Pang X, Hung C-F, Wu T-C (2011) Enhancement of protein vaccine potency by in vivo electroporation mediated intramuscular injection. Vaccine 29(5):1082–1089PubMedCrossRefGoogle Scholar
  109. 109.
    Pokorná D, Poláková I, Kindlová M, Dušková M, Ludvíková V, Gabriel P et al (2009) Vaccination with human papillomavirus type 16-derived peptides using a tattoo device. Vaccine 27(27):3519–3529PubMedCrossRefGoogle Scholar
  110. 110.
    Dell K, Koesters R, Gissmann L (2006) Transcutaneous immunization in mice: Induction of T-helper and cytotoxic T lymphocyte responses and protection against human papillomavirus-induced tumors. Int J Cancer 118(2):364–372PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Chandy AG, Nurkkala M, Josefsson A, Eriksson K (2007) Therapeutic dendritic cell vaccination with Ag coupled to cholera toxin in combination with intratumoural CpG injection leads to complete tumour eradication in mice bearing HPV 16 expressing tumours. Vaccine 25(32):6037–6046PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Mao X, Chen X, Zhang W, Wang J, Liu L, Zhou Q et al (2011) TLR agonists activate HPV11 E7-pulsed DCs to promote a specific T cell response in a murine model. Veterinarni Medicina 56(12):602–611CrossRefGoogle Scholar
  113. 113.
    Nguyen CT, Hong SH, Ung TT, Verma V, Kim SY, Rhee JH et al (2013) Intranasal immunization with a flagellin-adjuvanted peptide anticancer vaccine prevents tumor development by enhancing specific cytotoxic T lymphocyte response in a mouse model. Clin Exp Vaccine Res 2(2):128–134PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Ren F, Xu Y, Mao L, Ou R, Ding Z, Zhang X et al (2010) Heat shock protein 110 improves the anti-tumor effects of the cytotoxic T lymphocyte epitope E7 in mice. Cancer Biol Ther 9(2):134–141PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Liu D-W, Tsao Y-P, Kung JT, Ding Y-A, Sytwu H-K, Xiao X et al (2000) Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potential vaccine for cervical cancer. J Virol 74(6):2888–2894PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Liu B, Ye D, Song X, Zhao X, Yi L, Song J et al (2008) A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunity and antiangiogenesis. Vaccine 26(10):1387–1396PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Xu Y, Zhang H, Xu X (2007) Enhancement of vaccine potency by fusing modified LTK63 into human papillomavirus type 16 chimeric virus-like particles. FEMS Immunol Med Microbiol 52(1):99–109PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Balmelli C, Roden R, Potts A, Schiller J, De Grandi P, Nardelli-Haefliger D (1998) Nasal immunization of mice with human papillomavirus type 16 virus-like particles elicits neutralizing antibodies in mucosal secretions. J Virol 72(10):8220–8229PubMedPubMedCentralGoogle Scholar
  119. 119.
    Çuburu N, Kweon M-N, Hervouet C, Cha H-R, Pang Y-YS, Holmgren J et al (2009) Sublingual immunization with nonreplicating antigens induces antibody-forming cells and cytotoxic T cells in the female genital tract mucosa and protects against genital papillomavirus infection. J Immunol 183(12):7851–7859PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Malliaros J, Quinn C, Arnold FH, Pearse MJ, Drane DP, Stewart TJ et al (2004) Association of antigens to ISCOMATRIX™ adjuvant using metal chelation leads to improved CTL responses. Vaccine 22(29–30):3968–3975PubMedCrossRefGoogle Scholar
  121. 121.
    Tarpey I, Stacey SN, McIndoe A, Davies DH (1996) Priming in vivo and quantification in vitro of class I MHC-restricted cytotoxic T cells to human papilloma virus type 11 early proteins (E6 and E7) using immunostimulating complexes (ISCOMs). Vaccine 14(3):230–236PubMedCrossRefGoogle Scholar
  122. 122.
    Franconi R, Di Bonito P, Dibello F, Accardi L, Muller A, Cirilli A et al (2002) Plant-derived human papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Res 62(13):3654–3658PubMedGoogle Scholar
  123. 123.
    Massa S, Franconi R, Brandi R, Muller A, Mett V, Yusibov V et al (2007) Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine 25(16):3018–3021PubMedCrossRefGoogle Scholar
  124. 124.
    Karanam B, Gambhira R, Peng S, Jagu S, Kim D-J, Ketner GW et al (2009) Vaccination with HPV16 L2E6E7 fusion protein in GPI-0100 adjuvant elicits protective humoral and cell-mediated immunity. Vaccine 27(7):1040–1049PubMedCrossRefGoogle Scholar
  125. 125.
    Esquerré M, Bouillette-Marussig M, Goubier A, Momot M, Gonindard C, Keller H et al (2017) GTL001, a bivalent therapeutic vaccine against human papillomavirus 16 and 18, induces antigen-specific CD8+ T cell responses leading to tumor regression. PLoS One 12(3):e0174038PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Sharma RK, Srivastava AK, Yolcu ES, MacLeod KJ, Schabowsky R-H, Madireddi S et al (2010) SA-4-1BBL as the immunomodulatory component of a HPV-16 E7 protein based vaccine shows robust therapeutic efficacy in a mouse cervical cancer model. Vaccine 28(36):5794–5802PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular and Cell Biology, Student Research Committee, Molecular and Cell Biology Research Center, Faculty of MedicineMazandaran University of Medical SciencesSariIran
  2. 2.Department of Biology, Faculty of Basic ScienceShahed UniversityTehranIran
  3. 3.Molecular and Cell Biology Research Center (MCBRC), Faculty of MedicineMazandaran University of Medical SciencesSariIran
  4. 4.Department of Immunology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
  5. 5.Department of Microbiology, Molecular and Cell Biology Research Center, Faculty of MedicineMazandaran University of Medical SciencesSariIran
  6. 6.Student Research Committee, Faculty of MedicineMazandaran University of Medical SciencesSariIran
  7. 7.Department of Medical Laboratory Sciences, Student Research Committee, School of Allied Medical SciencesMazandaran University of Medical SciencesSariIran
  8. 8.Gastrointestinal Cancer Research CenterMazandaran University of Medical SciencesSariIran

Personalised recommendations