Skip to main content
Log in

First characterization of a canine parvovirus causing fatal disease in coatis (Nasua nasua)

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A canine parvovirus (CPV)-like virus was detected by PCR and isolated from dead coatis in Argentina. Analysis of the full-length genome sequence revealed that it resembled CPV-but also contained a mutation in the VP2 protein (Arg377Ser) that has not been described previously. This is the first report of a CPV-like virus producing clinical disease in coatis. Genetic similarity to CPV-2c viruses detected in Brazil suggests a strong relationship between these viruses. Although the pathogenic potential of CPV- and feline panleukopenia virus (FPV)-like strains in wild animals is still not completely understood, this study highlights the importance of parvoviruses as a threat to wildlife if proper conditions are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Cotmore SF, Agbandje-McKenna M, Chiorini JA et al (2014) The family Parvoviridae. Arch Virol 159:1239–1247. https://doi.org/10.1007/s00705-013-1914-1

    Article  CAS  PubMed  Google Scholar 

  2. Decaro N, Buonavoglia C (2012) Canine parvovirus—a review of epidemiological and diagnostic aspects, with emphasis on type 2c. Vet Microbiol 155:1–12. https://doi.org/10.1016/j.vetmic.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  3. Hoelzer K, Parrish CR (2010) The emergence of parvoviruses of carnivores. Vet Res 41:39. https://doi.org/10.1051/vetres/2010011

    Article  PubMed  PubMed Central  Google Scholar 

  4. Appel MJ, Scott FW, Carmichael LE (1979) Isolation and immunisation studies of a canine parco-like virus from dogs with haemorrhagic enteritis. Vet Rec 105:156–159

    Article  CAS  Google Scholar 

  5. Allison AB, Harbison CE, Pagan I et al (2012) Role of multiple hosts in the cross-species transmission and emergence of a pandemic parvovirus. J Virol 86:865–872. https://doi.org/10.1128/JVI.06187-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Allison AB, Kohler DJ, Fox KA et al (2013) Frequent cross-species transmission of parvoviruses among diverse carnivore hosts. J Virol 87:2342–2347. https://doi.org/10.1128/JVI.02428-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Truyen U, Gruenberg A, Chang SF et al (1995) Evolution of the feline-subgroup parvoviruses and the control of canine host range in vivo. J Virol 69:4702–4710. https://doi.org/10.1006/viro.1996.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duarte MD, Henriques AM, Barros SC et al (2013) Snapshot of viral infections in wild carnivores reveals ubiquity of parvovirus and susceptibility of Egyptian Mongoose to feline panleukopenia virus. PLoS One 8:e59399. https://doi.org/10.1371/journal.pone.0059399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steinel A, Parrish CR, Bloom ME, Truyen U (2001) Parvovirus infections in wild carnivores. J Wildl Dis 37:594–607. https://doi.org/10.7589/0090-3558-37.3.594

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Li T, Liu H et al (2017) Recombinant feline parvovirus infection of immunized tigers in central China. Emerg Microbes Infect 6:e42. https://doi.org/10.1038/emi.2017.25

    Article  PubMed  PubMed Central  Google Scholar 

  11. Canuti M, Britton AP, Graham SM, Lang AS (2017) Epidemiology and molecular characterization of protoparvoviruses infecting wild raccoons (Procyon lotor) in British Columbia, Canada. Virus Res 242:85–89. https://doi.org/10.1016/j.virusres.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  12. Mendenhall IH, Low D, Neves ES et al (2016) Evidence of canine parvovirus transmission to a civet cat (Paradoxurus musangus) in Singapore. One Heal (Amsterdam, Netherlands) 2:122–125. https://doi.org/10.1016/j.onehlt.2016.07.003

    Article  Google Scholar 

  13. Miranda C, Santos N, Parrish C, Thompson G (2017) Genetic characterization of canine parvovirus in sympatric free-ranging wild carnivores in Portugal. J Wildl Dis 53:824–831. https://doi.org/10.7589/2016-08-194

    Article  CAS  PubMed  Google Scholar 

  14. de Almeida Curi NH, Coelho CM, de Campos Cordeiro Malta M et al (2012) Pathogens of wild maned wolves (Chrysocyon brachyurus) in Brazil. J Wildl Dis 48:1052–1056. https://doi.org/10.7589/2011-10-304

    Article  PubMed  Google Scholar 

  15. Uhart MM, Rago MV, Marull CA et al (2012) Exposure to selected Pathogens in Geoffroy’s cats and domestic carnivores from central Argentina. J Wildl Dis 48:899–909. https://doi.org/10.7589/2011-05-137

    Article  PubMed  Google Scholar 

  16. Martino PE, Montenegro JL, Preziosi JA et al (2004) Serological survey of selected pathogens of free-ranging foxes in southern Argentina, 1998–2001. Rev Sci Tech 23:801–806

    Article  CAS  Google Scholar 

  17. Orozco MM, Miccio L, Enriquez GF et al (2014) Serologic evidence of canine parvovirus in domestic dogs, wild carnivores, and marsupials in the Argentinean Chaco. J Zoo Wildl Med 45:555–563. https://doi.org/10.1638/2013-0230R1.1

    Article  PubMed  Google Scholar 

  18. Johnson RH, Halliwell REW (1968) Natural susceptibility to feline panleucopaenia. Vet Rec 82:582

    Google Scholar 

  19. Buonavoglia C, Martella V, Pratelli A et al (2001) Evidence for evolution of canine parvovirus type 2 in Italy. J Gen Virol 82:3021–3025

    Article  CAS  Google Scholar 

  20. Martin DP, Murrell B, Golden M et al (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003. https://doi.org/10.1093/ve/vev003

    Article  PubMed  PubMed Central  Google Scholar 

  21. Allison AB, Kohler DJ, Ortega A et al (2014) Host-specific parvovirus evolution in nature is recapitulated by in vitro adaptation to different carnivore species. PLoS Pathog 10:e1004475. https://doi.org/10.1371/journal.ppat.1004475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gallo Calderón M, Wilda M, Boado L et al (2012) Study of canine parvovirus evolution: comparative analysis of full-length VP2 gene sequences from Argentina and international field strains. Virus Genes 44:32–39. https://doi.org/10.1007/s11262-011-0659-8

    Article  CAS  PubMed  Google Scholar 

  23. Calderón MG, Romanutti C, Wilda M et al (2015) Resurgence of canine parvovirus 2a strain in the domestic dog population from Argentina. J Virol Methods 222:145–149. https://doi.org/10.1016/j.jviromet.2015.06.012

    Article  CAS  PubMed  Google Scholar 

  24. Pérez R, Calleros L, Marandino A et al (2014) Phylogenetic and genome-wide deep-sequencing analyses of canine parvovirus reveal co-infection with field variants and emergence of a recent recombinant strain. PLoS One 9:e111779. https://doi.org/10.1371/journal.pone.0111779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maya L, Calleros L, Francia L et al (2013) Phylodynamics analysis of canine parvovirus in Uruguay: evidence of two successive invasions by different variants. Arch Virol 158:1133–1141. https://doi.org/10.1007/s00705-012-1591-5

    Article  CAS  PubMed  Google Scholar 

  26. Pereira CAD, Leal ES, Durigon EL (2007) Selective regimen shift and demographic growth increase associated with the emergence of high-fitness variants of canine parvovirus. Infect Genet Evol 7:399–409. https://doi.org/10.1016/j.meegid.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  27. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  28. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  29. Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  30. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  Google Scholar 

  32. Nettles VF, Pearson JE, Gustafson GA, Blue JL (1980) Parvovirus infection in translocated raccoons. J Am Vet Med Assoc 177:787–789

    CAS  PubMed  Google Scholar 

  33. Kapil S, Rezabek G, Germany B, Johnston L (2010) Isolation of a virus related to canine parvovirus type 2 from a raccoon (Procyon lotor). Vet Rec 166:24–25. https://doi.org/10.1136/vr.b5587

    Article  CAS  PubMed  Google Scholar 

  34. Truyen U, Evermann JF, Vieler E, Parrish CR (1996) Evolution of canine parvovirus involved loss and gain of feline host range. Virology 215:186–189. https://doi.org/10.1006/viro.1996.0021

    Article  CAS  PubMed  Google Scholar 

  35. Allison AB, Organtini LJ, Zhang S et al (2016) Single mutations in the VP2 300 loop region of the three-fold spike of the carnivore parvovirus capsid can determine host range. J Virol 90:753–767. https://doi.org/10.1128/JVI.02636-15

    Article  CAS  PubMed  Google Scholar 

  36. Tresnan DB, Southard L, Weichert W et al (1995) Analysis of the cell and erythrocyte binding activities of the dimple and canyon regions of the canine parvovirus capsid. Virology 211:123–132. https://doi.org/10.1006/viro.1995.1385

    Article  CAS  PubMed  Google Scholar 

  37. Zuo J, Rao J, Xu H et al (2010) Analysis of the vp2 gene sequence of a new mutated mink enteritis parvovirus strain in PR China. Virol J 7:124. https://doi.org/10.1186/1743-422X-7-124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barbis DP, Chang S-F, Parrish CR (1992) Mutations adjacent to the dimple of the canine parvovirus capsid structure affect sialic acid binding. Virology 191:301–308. https://doi.org/10.1016/0042-6822(92)90192-R

    Article  CAS  PubMed  Google Scholar 

  39. Furtado MM, Hayashi EMK, Allendorf SD et al (2016) Exposure of free-ranging wild carnivores and domestic dogs to canine distemper virus and parvovirus in the Cerrado of Central Brazil. Ecohealth 13:549–557. https://doi.org/10.1007/s10393-016-1146-4

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Bucafusco.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Sheela Ramamoorthy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(A) Jejunum. Necrosis and dilatation of crypts of Lieberkühn, with villous atrophy (H&E, 100X) (left). Dilated crypts with cellular debris in the lumen. Some crypts are lined by flattened epithelial cells (H&E, 400X) (right). (B) MDCK and CRFK cells infected with the coati parvovirus and CPV-2c. FICT-labeled monoclonal antibody against CPV was used for specific antigen detection. Cellular nuclei were stained with DAPI (400X) (TIFF 4186 kb)

Supplementary Fig. 2

PCR for detection of carnivore protoparvovirus 1 DNA in supernatants from MDCK and CRFK after the 3rd passage of infection. (1) Infected MDCK, (2) mock MDCK, (3) infected CRFK, (4) Mock CRFK, (5) positive control, (6) negative control (7) 100-bp DNA ladder (TIFF 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucafusco, D., Argibay, H., Diaz, L. et al. First characterization of a canine parvovirus causing fatal disease in coatis (Nasua nasua). Arch Virol 164, 3073–3079 (2019). https://doi.org/10.1007/s00705-019-04417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04417-4

Navigation