Archives of Virology

, Volume 164, Issue 7, pp 1883–1887 | Cite as

Identification of a novel nanovirus in parsley

  • H. Josef Vetten
  • Dennis Knierim
  • Mirko Sebastian Rakoski
  • Wulf Menzel
  • Edgar Maiss
  • Bruno Gronenborn
  • Stephan Winter
  • Björn KrenzEmail author
Brief Report


Using next-generation sequencing to characterize agents associated with a severe stunting disease of parsley from Germany, we identified a hitherto undescribed virus. We sequenced total RNA and rolling-circle-amplified DNA from diseased plants. The genome sequence of the virus shows that it is a member of the genus Nanovirus, but it lacks DNA-U4. In addition to the seven genomic DNAs of the virus, we identified a second DNA-R and seven distinct alphasatellites associated with the disease. We propose the name “parsley severe stunt associated virus” (PSSaV) for this novel nanovirus.



The authors would like to thank Verena Maiberg and Viola Weichelt for technical assistance.

Supplementary material

705_2019_4280_MOESM1_ESM.doc (70 kb)
Supplementary material 1 (DOC 69 kb)


  1. 1.
    Gronenborn B (2004) Nanoviruses: genome organisation and protein function. Vet Microbiol 98:103–109. CrossRefGoogle Scholar
  2. 2.
    Vetten HJ, Dale JL, Grigoras I, Gronenborn B, Harding R, Randles JW, Sano Y, Thomas JE, Timchenko T, Yeh H-H (2012) Family Nanoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy. Ninth Report of the International Committee on taxonomy of viruses. Elsevier/Academic Press, London, pp 395–404Google Scholar
  3. 3.
    Gallet R, Kraberger S, Filloux D, Galzi S, Fontes H, Martin DP, Varsani A, Roumagnac P (2018) Nanovirus-alphasatellite complex identified in Vicia cracca in the Rhône delta region of France. Arch Virol 163:695–700. CrossRefGoogle Scholar
  4. 4.
    Grigoras I, Gronenborn B, Vetten HJ (2010) First report of a nanovirus disease of pea in Germany. Plant Dis 94:642. CrossRefGoogle Scholar
  5. 5.
    Grigoras I, del Cueto Ginzo AI, Martin DP, Varsani A, Romero J, Mammadov AC, Huseynova IM, Aliyev JA, Kheyr-Pour A, Huss H, Ziebell H, Timchenko T, Vetten HJ, Gronenborn B (2014) Genome diversity and evidence of recombination and reassortment in nanoviruses from Europe. J Gen Virol 95:1178–1191. CrossRefGoogle Scholar
  6. 6.
    Moran J, Van Rijswijk B, Traicevski V, Kitajima EW (2002) Potyviruses, novel and known, in cultivated and wild species of the family Apiaceae in Australia. Arch Virol 147:1855–1867. CrossRefGoogle Scholar
  7. 7.
    Krenz B, Thompson JR, Mclane HL, Fuchs M, Perry KL (2014) Grapevine red blotch-associated virus is widespread in the United States. Phytopathology 104:1232–1240. CrossRefGoogle Scholar
  8. 8.
    Haible D, Kober S, Jeske H (2006) Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods 135:9–16. CrossRefGoogle Scholar
  9. 9.
    Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  10. 10.
    Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9:e108277. CrossRefGoogle Scholar
  11. 11.
    Timchenko T, Katul L, Sano Y, de Kouchkovsky F, Vetten HJ, Gronenborn B (2000) The master rep concept in nanovirus replication: identification of missing genome components and potential for natural genetic reassortment. Virology 274:189–195. CrossRefGoogle Scholar
  12. 12.
    Horser CL, Harding RM, Dale JL (2001) Banana bunchy top nanovirus DNA-1 encodes the ‘master’’ replication initiation protein. J Gen Virol 82:459–464. CrossRefGoogle Scholar
  13. 13.
    Heydarnejad J, Kamali M, Massumi H, Kvarnheden A, Male MF, Kraberger S, Stainton D, Martin DP, Varsani A (2017) Identification of a nanovirus-alphasatellite complex in Sophora alopecuroides. Virus Res 235:24–32. CrossRefGoogle Scholar
  14. 14.
    Krenz B, Schießl I, Greiner E, Krapp S (2017) Analyses of pea necrotic yellow dwarf virus-encoded proteins. Virus Genes 53:454–463. CrossRefGoogle Scholar
  15. 15.
    Grigoras I, Vetten H-J, Commandeur U, Ziebell H, Gronenborn B, Timchenko T (2018) Nanovirus DNA-N encodes a protein mandatory for aphid transmission. Virology 522:281–291. CrossRefGoogle Scholar
  16. 16.
    Briddon RW, Martin DP, Roumagnac P, Navas-Castillo J, Fiallo-Olivé E, Moriones E, Lett JM, Zerbini FM, Varsani A (2018) Alphasatellitidae : a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Arch Virol 163:2587–2600. CrossRefGoogle Scholar
  17. 17.
    Zhang C, Zheng H, Yan D, Han K, Song X, Liu Y, Zhang D, Chen J, Yan F (2017) Complete genomic characterization of milk vetch dwarf virus isolates from cowpea and broad bean in Anhui province, China. Arch Virol 162:2437–2440. CrossRefGoogle Scholar
  18. 18.
    Yang JG, Wang SP, Liu W, Li Y, Shen L, Qian Y, Du Z, Wang FL (2015) First report of milk vetch dwarf virus associated with a disease of Nicotiana tabacum in China. Plant Dis 100:1255. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CremlingenGermany
  2. 2.Leibniz Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ)BrunswickGermany
  3. 3.Department of Phytomedicine, Plant Virology, Institute of Horticultural Production SystemsLeibniz UniversityHannoverGermany
  4. 4.Institute for Integrative Biology of the Cell, UMR9198, CNRSUniversité Paris-Sud, CEAGif sur YvetteFrance

Personalised recommendations