Epigallocatechin gallate (EGCG) and miR-548m reduce HCV entry through repression of CD81 receptor in HCV cell models

  • Radwa Yehia Mekky
  • Nada El-Ekiaby
  • Shereen Ahmed El Sobky
  • Noha Mousaad Elemam
  • Rana Ahmed Youness
  • Mohammad El-Sayed
  • Mohammed Tarif Hamza
  • Gamal Esmat
  • Ahmed Ihab AbdelazizEmail author
Original Article


Epigallocatechin gallate (EGCG) is the most abundant component in green tea extract, that has powerful antioxidant and antiviral effects. It has been previously reported to inhibit HCV entry via several mechanisms. Hence, this study aimed at further investigating the potential impact of EGCG on HCV entry through regulation of the expression of tetraspanin receptor CD81 by the novel predicted miR-548m. Liver biopsies were obtained from 29 HCV patients and 10 healthy controls for expression profiling. Huh7 cells were stimulated with EGCG and subsequently miR-548m expression was assessed. Naïve, HCV- ED43/JFH-1 and HCV-JFH-1 infected Huh7 cells were transfected by miR-548m mimics and inhibitors. Consequently, CD81 protein and mRNA levels were assessed using flow cytometry and qRT-PCR, respectively. Additionally, these cells were used to investigate HCV permissiveness into Huh7 cells using qRT-PCR for viral quantification. Direct binding confirmation of miR-548m to CD81 was done using luciferase reporter assay. In-silico analysis revealed miR-548m to have two potential binding sites in the 3’UTR of CD81 mRNA. EGCG boosted miR-548m expression in Huh7 cells. Additionally, miR-548m caused a downregulation of CD81 protein and mRNA levels as well as reduction in HCV infectivity of Huh7 cells. Luciferase binding assay confirmed the binding of miR-548m to CD81 mRNA at the two predicted binding sites. Intriguingly, miR-548m expression was not detected in healthy liver biopsies but was found in liver biopsies of HCV patients. This study shows that EGCG might act as an anti-HCV agent that reduces cellular infectivity via enhancing miR-548m expression and repressing CD81 receptor.



Bronchoalveolar lavage fluid


Direct acting antivirals


Dulbecco’s modified eagle’s medium


Double stranded RNA


Epstein-Barr virus




Fetal bovine serum


Hepatitis B Virus


Hepatocellular carcinoma


Hepatitis C Virus


Human immunodeficiency virus


Mitogen activated protein kinase




Quantitative real time polymerase chain reaction


Small interfering RNA


Untranslated region


Conflicts of interest

The authors fully declare no financial or potential conflict of interest

Funding source

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


  1. 1.
    Calland N, Sahuc M-E, Belouzard S, Pène V, Bonnafous P, Mesalam AA, Deloison G, Descamps V, Sahpaz S, Wychowski C, Lambert O, Brodin P, Duverlie G, Meuleman P, Rosenberg AR, Dubuisson J, Rouillé Y, Séron K (2015) Polyphenols inhibit hepatitis C virus entry by a new mechanism of action. J Virol 89:10053–10063CrossRefGoogle Scholar
  2. 2.
    Chow HHS, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA, Dorr RT, Hara Y, Alberts DS (2003) Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 9:3312Google Scholar
  3. 3.
    Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton-Miller JMT, Taylor PW (2004) Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. Int J Antimicrob Agents 23:462–467CrossRefGoogle Scholar
  4. 4.
    Xu J, Xu Z, Zheng W (2017) A review of the antiviral role of green tea catechins. Molecules 22:1337CrossRefGoogle Scholar
  5. 5.
    Lambert JD (2013) Does tea prevent cancer? Evidence from laboratory and human intervention studies. Am J Clin Nutr 98:1667S–1675SCrossRefGoogle Scholar
  6. 6.
    Calland N, Albecka A, Belouzard S, Wychowski C, Duverlie G, Descamps V, Hober D, Dubuisson J, Rouillé Y, Séron K (2012) (−)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 55:720–729CrossRefGoogle Scholar
  7. 7.
    Song J-M, Lee K-H, Seong B-L (2005) Antiviral effect of catechins in green tea on influenza virus. Antivir Res 68:66–74CrossRefGoogle Scholar
  8. 8.
    Nance CL, Siwak EB, Shearer WT (2009) Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy. J Allergy Clin Immunol 123:459–465CrossRefGoogle Scholar
  9. 9.
    Xu J, Wang J, Deng F, Hu Z, Wang H (2008) Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro. Antivir Res 78:242–249CrossRefGoogle Scholar
  10. 10.
    Chen C, Qiu H, Gong J, Liu Q, Xiao H, Chen X-W, Sun B-L, Yang R-G (2012) (−)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus. Arch Virol 157:1301–1312CrossRefGoogle Scholar
  11. 11.
    Ciesek S, von Hahn T, Colpitts Che C, Schang Luis M, Friesland M, Steinmann J, Manns Michael P, Ott M, Wedemeyer H, Meuleman P, Pietschmann T, Steinmann E (2011) The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology 54:1947–1955CrossRefGoogle Scholar
  12. 12.
    Colpitts CC, Schang LM (2014) A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J Virol 88:7806–7817CrossRefGoogle Scholar
  13. 13.
    Wang Y, Li J, Wang X, Peña JC, Li K, Zhang T, Ho W (2016) (−)-Epigallocatechin-3-gallate enhances hepatitis C virus double-stranded rna intermediates-triggered innate immune responses in hepatocytes. Sci Rep 6:21595CrossRefGoogle Scholar
  14. 14.
    Ahn J-I, Jeong KJ, Ko M-J, Shin HJ, Kim HS, Chung HJ, Jeong H-S (2010) Changes of miRNA and mRNA expression in HepG2 cells treated by epigallocatechin gallate. Mol Cell Toxicol 6:169–177CrossRefGoogle Scholar
  15. 15.
    Mekky RY, El-Ekiaby NM, Hamza MT, Elemam NM, El-sayed M, Esmat G, Abdelaziz AI (2015) Mir-194 is a hepatocyte gate keeper hindering HCV entry through targeting CD81 receptor. J Infect 70:78–87CrossRefGoogle Scholar
  16. 16.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73CrossRefGoogle Scholar
  17. 17.
    Liang T, Guo L, Liu C (2012) Genome-wide analysis of mir-548 gene family reveals evolutionary and functional implications. J Biomed Biotechnol 2012:8CrossRefGoogle Scholar
  18. 18.
    Li Y, Xie J, Xu X, Wang J, Ao F, Wan Y, Zhu Y (2013) MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-λ1. Protein Cell 4:130–141CrossRefGoogle Scholar
  19. 19.
    Geddawy A, Ibrahim YF, Elbahie NM, Ibrahim MA (2017) Direct acting anti-hepatitis c virus drugs: clinical pharmacology and future direction. J Transl Int Med 5:8–17CrossRefGoogle Scholar
  20. 20.
    Grandhe S, Frenette CT (2017) Occurrence and recurrence of hepatocellular carcinoma after successful direct-acting antiviral therapy for patients with chronic hepatitis C virus infection. Gastroenterol Hepatol (NY) 13:421–425Google Scholar
  21. 21.
    El Kassas M, Funk AL, Salaheldin M, Shimakawa Y, Eltabbakh M, Jean K, El Tahan A, Sweedy AT, Afify S, Youssef NF, Esmat G, Fontanet A (2018) Increased recurrence rates of hepatocellular carcinomaafter DAA therapy in a hepatitis C-infected Egyptian cohort: a comparative analysis. J Viral Hepat 25:623–630CrossRefGoogle Scholar
  22. 22.
    Reig M, Mariño Z, Perelló C, Iñarrairaegui M, Ribeiro A, Lens S, Díaz A, Vilana R, Darnell A, Varela M, Sangro B, Calleja JL, Forns X, Bruix J (2016) Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J Hepatol 65:719–726CrossRefGoogle Scholar
  23. 23.
    Arffa ML, Zapf MA, Kothari AN, Chang V, Gupta GN, Ding X, Al-Gayyar MM, Syn W, Elsherbiny NM, Kuo PC, Mi Z (2016) Epigallocatechin-3-gallate upregulates miR-221 to inhibit osteopontin-dependent hepatic fibrosis. PLoS One 11:e0167435CrossRefGoogle Scholar
  24. 24.
    Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21:140–146CrossRefGoogle Scholar
  25. 25.
    Baselga-Escudero L, Blade C, Ribas-Latre A, Casanova E, Suárez M, Torres JL, Salvadó MJ, Arola L, Arola-Arnal A (2014) Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acids Res 42:882–892CrossRefGoogle Scholar
  26. 26.
    El Tayebi HM, Hosny KA, Esmat G, Breuhahn K, Abdelaziz Ahmed I (2012) miR-615-5p is restrictedly expressed in cirrhotic and cancerous liver tissues and its overexpression alleviates the tumorigenic effects in hepatocellular carcinoma. FEBS Lett 586:3309–3316CrossRefGoogle Scholar
  27. 27.
    Elhelw DS, Riad SE, Shawer H, El-Ekiaby N, Salah A, Zekri A, Amleh A, Esmat G, Abdelaziz AI (2018) Correction to: ectopic delivery of miR-200c diminishes hepatitis C virus infectivity through transcriptional and translational repression of Occludin. Arch Virol 163:1405CrossRefGoogle Scholar
  28. 28.
    Riad SE, Elhelw DS, Shawer H, El-Ekiaby N, Salah A, Zekri A, Esmat G, Amleh A, Abdelaziz AI (2018) Disruption of Claudin-1 expression by miRNA-182 alters the susceptibility to viral infectivity in HCV cell models. Front Genet 9:93CrossRefGoogle Scholar
  29. 29.
    Maemura T, Fukuyama S, Sugita Y, Lopes TJS, Nakao T, Noda T, Kawaoka Y (2018) Lung-derived exosomal miR-483-3p regulates the innate immune response to influenza virus infection. J Infect Dis 217:1372–1382CrossRefGoogle Scholar
  30. 30.
    Wang J, Deng Z, Wang Z, Wu J, Gu T, Jiang Y, Li G (2016) MicroRNA-155 in exosomes secreted from Helicobacter pylori infection macrophages immunomodulates inflammatory response. Am J Transl Res 8:3700–3709Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Radwa Yehia Mekky
    • 1
  • Nada El-Ekiaby
    • 2
  • Shereen Ahmed El Sobky
    • 3
  • Noha Mousaad Elemam
    • 4
  • Rana Ahmed Youness
    • 3
  • Mohammad El-Sayed
    • 5
  • Mohammed Tarif Hamza
    • 6
  • Gamal Esmat
    • 5
  • Ahmed Ihab Abdelaziz
    • 2
    Email author
  1. 1.Department of Pharmacology and ToxicologyGerman University in CairoCairoEgypt
  2. 2.School of MedicineNewGiza University (NGU), NewGizaCairoEgypt
  3. 3.Department of Pharmaceutical BiologyGerman University in CairoCairoEgypt
  4. 4.Sharjah Institute for Medical Research (SIMR), College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
  5. 5.Department of Endemic Medicine and HepatogastroenterologyCairo UniversityCairoEgypt
  6. 6.Department of Clinical PathologyAin Shams UniversityCairoEgypt

Personalised recommendations