Archives of Virology

, Volume 164, Issue 5, pp 1383–1391 | Cite as

Characterization of Dev-CD-23823 and Dev-CT57, new Autographivirinae bacteriophages infecting Cronobacter spp.

  • Michal Kajsík
  • Juraj Bugala
  • Veronika Kadličeková
  • Tomáš Szemes
  • Ján Turňa
  • Hana DrahovskáEmail author
Original Article


Cronobacter spp. are opportunistic pathogenic bacteria responsible for severe infections in neonates. Powdered infant formula has been confirmed to be the source of infection in some cases. Bacteriophages offer a safe means for eliminating this pathogen. In the present study, we characterized two closely related Cronobacter-specific bacteriophages of the proposed genus “GAP227virus”. The phages Dev-CD-23823 and Dev-CT57 possessed broad host specificity, as they infected 88% and 80% of the Cronobacter strains tested. Genome sequence comparisons of phages Dev-CD-23823 and Dev-CT57 showed different levels of similarity to the prototype GAP227 phage. The Dev-CT57 phage was highly similar, whereas the Dev-CD-23823 phage showed only 75% sequence identity. A phylogenic tree based on the RNA polymerase (RNAP) gene from selected representatives of the subfamily Autographivirinae confirmed the grouping of Dev-CD-23823, Dev-CT57 and GAP227 in one cluster together with phages PP2, Phi80-18 and PhiR8-01. A common conserved motif was also detected in the RNAP promoters of these phages. The functional activity of these RNAP promoters was confirmed experimentally using a promoter probe vector, and a phage-specific signal was observed; however, some cross-specificity of Dev-CD-23823 and Dev-CT57 promoters was also detected. These results will contribute to our understanding of the biology and evolution of Autographivirinae phages.



This work was supported by the Slovak Research and Development Agency under Contract no. APVV-16-0168, and by the Research and Development Operational Programme, funded by the ERDF (ITMS 26240220086).

Supplementary material

705_2019_4202_MOESM1_ESM.doc (418 kb)
Supplementary material 1 (DOC 418 kb)


  1. 1.
    Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, Fanning S, Stephan R, Joosten H (2007) The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol 7:64Google Scholar
  2. 2.
    Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ (2012) Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. Int J Syst Evol Microbiol 62(6):1277–1283Google Scholar
  3. 3.
    Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V, Trach LH, Chase HR, Fanning S, Tall BD (2014) Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. Int J Syst Evol Microbiol 64(Pt 10):3402–3410Google Scholar
  4. 4.
    Hunter CJ, Bean JF (2013) Cronobacter: an emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis. J Perinatol 33:581–585Google Scholar
  5. 5.
    Holy O, Forsythe S (2014) Cronobacter spp. as emerging causes of healthcare-associated infection. J Hosp Infect 86(3):169–177Google Scholar
  6. 6.
    Patrick ME, Mahon BE, Greene SA, Rounds J, Cronquist A, Wymore K, Boothe E, Lathrop S, Palmer A, Bowen A (2014) Incidence of Cronobacter spp. infections, United States, 2003–2009. Emerg Infect Dis 20(9):1536–1539Google Scholar
  7. 7.
    Alsonosi A, Hariri S, Kajsik M, Orieskova M, Hanulik V, Roderova M, Petrzelova J, Kollarova H, Drahovska H, Forsythe S, Holy O (2015) The speciation and genotyping of Cronobacter isolates from hospitalised patients. Eur J Clin Microbiol Infect Dis 34(10):1979–1988Google Scholar
  8. 8.
    Turcovsky I, Kunikova K, Drahovska H, Kaclikova E (2011) Biochemical and molecular characterization of Cronobacter spp. (formerly Enterobacter sakazakii) isolated from foods. Antonie Leeuwenhoek 99(2):257–269Google Scholar
  9. 9.
    Ueda S (2017) Occurrence of Cronobacter spp. in dried foods, fresh vegetables and soil. Biocontrol Sci 22(1):55–59Google Scholar
  10. 10.
    Yan QQ, Condell O, Power K, Butler F, Tall BD, Fanning S (2012) Cronobacter species (formerly known as Enterobacter sakazakii) in powdered infant formula: a review of our current understanding of the biology of this bacterium. J Appl Microbiol 113(1):1–15Google Scholar
  11. 11.
    Moye ZD, Woolston J, Sulakvelidze A (2018) Bacteriophage applications for food production and processing. Viruses 10(4):E205Google Scholar
  12. 12.
    Garcia P, Martinez B, Obeso JM, Rodriguez A (2008) Bacteriophages and their application in food safety. Lett Appl Microbiol 47(6):479–485Google Scholar
  13. 13.
    Zuber S, Boissin-Delaporte C, Michot L, Iversen C, Diep B, Brussow H, Breeuwer P (2008) Decreasing Enterobacter sakazakii (Cronobacter spp.) food contamination level with bacteriophages: prospects and problems. Microb Biotechnol 1(6):532–543Google Scholar
  14. 14.
    Kajsík M, Oslanecová L, Szemes T, Hýblová M, Bilková A, Drahovská H, Turňa J (2014) Characterization and genome sequence of Dev2, a new T7-like bacteriophage infecting Cronobacter turicensis. Arch Virol 159(11):3013–3019Google Scholar
  15. 15.
    Abbasifar R, Kropinski AM, Sabour PM, Ackermann HW, Alanis Villa A, Abbasifar A, Griffiths MW (2013) The genome of Cronobacter sakazakii bacteriophage vB_CsaP_GAP227 suggests a new genus within the Autographivirinae. Genome Announc 1(1):e00122-12Google Scholar
  16. 16.
    Endersen L, Buttimer C, Nevin E, Coffey A, Neve H, Oliveira H, Lavigne R, O’Mahony J (2017) Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula. Int J Food Microbiol 253:1–11Google Scholar
  17. 17.
    Kim KP, Klumpp J, Loessner MJ (2007) Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int J Food Microbiol 115(2):195–203Google Scholar
  18. 18.
    Grose JH, Casjens SR (2014) Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468–470:421–443Google Scholar
  19. 19.
    Lim JA, Heu S, Park J, Roh E (2017) Genomic characterization of bacteriophage vB_PcaP_PP2 infecting Pectobacterium carotovorum subsp. carotovorum, a new member of a proposed genus in the subfamily Autographivirinae. Arch Virol 162(8):2441–2444Google Scholar
  20. 20.
    Hamdi S, Rousseau GM, Labrie SJ, Kourda RS, Tremblay DM, Moineau S, Slama KB (2016) Characterization of five podoviridae phages infecting Citrobacter freundii. Front Microbiol 7:1023Google Scholar
  21. 21.
    Chen Z, Schneider TD (2005) Information theory based T7-like promoter models: classification of bacteriophages and differential evolution of promoters and their polymerases. Nucleic Acids Res 33(19):6172–6187Google Scholar
  22. 22.
    Yang H, Ma Y, Wang Y, Shen W, Chen X (2014) Transcription regulation mechanisms of bacteriophages: recent advances and future prospects. Bioengineered 5(5):300–304Google Scholar
  23. 23.
    Sousa R, Mukherjee S (2003) T7 RNA polymerase. In: Moldave K (ed) Progress in nucleic acid research and molecular biology, vol 73. Academic Press, Cambridge, pp 1–41Google Scholar
  24. 24.
    Rong M, Biao H, McAllister WT, Durbin RK (1998) Promoter specificity determinants of T7 RNA polymerase. Proc Natl Acad Sci USA 95(2):515–519Google Scholar
  25. 25.
    Boulanger P (2009) Purification of bacteriophages and SDS-PAGE analysis of phage structural proteins from ghost particles. Methods Mol Biol 502:227–238Google Scholar
  26. 26.
    Caubilla-Barron J, Hurrell E, Townsend S, Cheetham P, Loc-Carrillo C, Fayet O, Prere MF, Forsythe SJ (2007) Genotypic and phenotypic analysis of Enterobacter sakazakii strains from an outbreak resulting in fatalities in a neonatal intensive care unit in France. J Clin Microbiol 45:3979–3985Google Scholar
  27. 27.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75Google Scholar
  28. 28.
    Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas AN, Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430(15):2237–2243Google Scholar
  29. 29.
    Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME suite: tools for motif discovery and searching. Nucleic Acids Res 37(SUPPL. 2):W202–W208Google Scholar
  30. 30.
    Lavigne R, Sun WD, Volckaert G (2004) PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics 20(5):629–635Google Scholar
  31. 31.
    Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190Google Scholar
  32. 32.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874Google Scholar
  33. 33.
    Meier-Kolthoff JP, Göker M (2017) VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics (Oxford, England) 33:3396–3404Google Scholar
  34. 34.
    Salem M, Skurnik M (2018) Genomic characterization of sixteen Yersinia enterocolitica-infecting podoviruses of pig origin. Viruses 10(4):174Google Scholar
  35. 35.
    Krahulec J, Hyrsova M, Pepeliaev S, Jilkova J, Cerny Z, Machalkova J (2010) High level expression and purification of antimicrobial human cathelicidin LL-37 in Escherichia coli. Appl Microbiol Biotechnol 88(1):167–175Google Scholar
  36. 36.
    Adriaenssens EM, Ceyssens PJ, Dunon V, Ackermann HW, Van Vaerenbergh J, Maes M, De Proft M, Lavigne R (2011) Bacteriophages LIMElight and LIMEzero of Pantoea agglomerans, belonging to the “phiKMV-like viruses”. Appl Environ Microbiol 77(10):3443–3450Google Scholar
  37. 37.
    Steven AC, Trus BL, Maizel JV, Unser M, Parry DAD, Wall JS, Hainfeld JF, Studier FW (1988) Molecular substructure of a viral receptor-recognition protein. The gp17 tail-fiber of bacteriophage T7. J Mol Biol 200(2):351–365Google Scholar
  38. 38.
    Abbasifar R, Griffiths MW, Sabour PM, Ackermann HW, Vandersteegen K, Lavigne R, Noben JP, Alanis Villa A, Abbasifar A, Nash JH, Kropinski AM (2014) Supersize me: Cronobacter sakazakii phage GAP32. Virology 460–461:138–146Google Scholar
  39. 39.
    Knirel YA, Prokhorov NS, Shashkov AS, Ovchinnikova OG, Zdorovenko EL, Liu B, Kostryukova ES, Larin AK, Golomidova AK, Letarov AV (2015) Variations in O-antigen biosynthesis and O-acetylation associated with altered phage sensitivity in Escherichia coli 4s. J Bacteriol 197(5):905–912Google Scholar
  40. 40.
    Lavigne R, Burkal’tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaert G (2003) The genome of bacteriophage φKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312(1):49–59Google Scholar
  41. 41.
    Drulis-Kawa Z, Mackiewicz P, Kesik-Szeloch A, Maciaszczyk-Dziubinska E, Weber-Dabrowska B, Dorotkiewicz-Jach A, Augustyniak D, Majkowska-Skrobek G, Bocer T, Empel J, Kropinski AM (2011) Isolation and characterisation of KP34—a novel phiKMV-like bacteriophage for Klebsiella pneumoniae. Appl Microbiol Biotechnol 90(4):1333–1345Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Comenius University Science ParkBratislavaSlovakia
  2. 2.Department of Molecular BiologyComenius University Faculty of Natural Sciences, PRIF UKBratislava 4Slovakia

Personalised recommendations