Advertisement

Archives of Virology

, Volume 164, Issue 4, pp 1229–1232 | Cite as

Genetic characterization of a novel G9P[23] rotavirus A strain identified in southwestern China with evidence of a reassortment event between human and porcine strains

  • Danyu Chen
  • Long Zhou
  • Yiming Tian
  • Xuan Wu
  • Lan Feng
  • Xiping Zhang
  • Zhihui Liu
  • Shurui Pang
  • Runmin Kang
  • Jifeng Yu
  • Yonggang Ye
  • Hongning Wang
  • Xin YangEmail author
Annotated Sequence Record
  • 66 Downloads

Abstract

Group A rotaviruses (RVAs) are important zoonotic pathogens that cause intestinal disease in humans and other mammals. In this study, the novel strain RVA/Pig/China/SC11/2017/G9P[23](SC11) was isolated from fecal samples from a pig farm in Sichuan province, southwestern China. The complete genome was found to be 18,347 bp in length with 11 segments. The genotype constellation of strain SC11 was G9-P[23]-I12-R1-C1-M1-A1-N1-T1-E1-H1, according to whole-genome sequencing analysis. The VP1, VP2, VP4, VP6, NSP1–NSP3, and NSP5 genes of RVA strain SC11 were found to be closely related to those of porcine and/or porcine-like human RVAs. Meanwhile, the VP7 and NSP4 genes of strain SC11 were closely related to genes of human RVAs. However, it was difficult to pinpoint the porcine or human origin of the VP3 gene of strain SC11 based on the available data. These results showed that SC11 originated from a natural reassortment event between human and pig RVA strains, and crossover points for recombination were identified at nucleotides (nt) 109-806 of NSP2. This is the first report of such a reassortant and recombinant RVA strain in the southwestern region of China.

Notes

Funding

This study was funded by the National Key Research Program of China (Grant No. 2017YFD0502200), the Program of Main Livestock Standardized Breeding Technology Research and Demonstration (Grant No. 2016NYZ0052), the Public Welfare Scientific Research Institutes Basic Research Projects (Grant No. SASA2017A07), the Transformation Fund of Scientific and Technological Achievements of Scientific Research Institutes in Sichuan Province (Grant No. 2018YSZH0005), and the Special Finance of Sichuan (Grant No. SASA2014CZYX009).

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

705_2019_4188_MOESM1_ESM.docx (754 kb)
Supplementary material 1 (DOCX 753 kb)

References

  1. 1.
    Vlasova AN, Amimo JO, Saif LJ (2017) Porcine rotaviruses: epidemiology, immune responses and control strategies. Viruses.  https://doi.org/10.3390/v9030048 Google Scholar
  2. 2.
    Tate JE, Burton AH, Boschi-Pinto C, Parashar UD, World Health Organization-Coordinated Global Rotavirus Surveillance N (2016) Global, regional, and national estimates of rotavirus mortality in children <5 Years of Age, 2000-2013. Clin Infect Dis 62(Suppl 2):S96–S105.  https://doi.org/10.1093/cid/civ1013 CrossRefGoogle Scholar
  3. 3.
    Theuns S, Desmarets LM, Heylen E, Zeller M, Dedeurwaerder A, Roukaerts ID, Van Ranst M, Matthijnssens J, Nauwynck HJ (2014) Porcine group A rotaviruses with heterogeneous VP7 and VP4 genotype combinations can be found together with enteric bacteria on Belgian swine farms. Vet Microbiol 172(1–2):23–34.  https://doi.org/10.1016/j.vetmic.2014.04.002 CrossRefGoogle Scholar
  4. 4.
    Jing Z, Zhang X, Shi H, Chen J, Shi D, Dong H, Feng L (2018) A G3P[13] porcine group A rotavirus emerging in China is a reassortant and a natural recombinant in the VP4 gene. Transbound Emerg Dis 65(2):e317–e328.  https://doi.org/10.1111/tbed.12756 CrossRefGoogle Scholar
  5. 5.
    Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Banyai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gomara M, Johne R, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Parreno V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156(8):1397–1413.  https://doi.org/10.1007/s00705-011-1006-z CrossRefGoogle Scholar
  6. 6.
    Tacharoenmuang R, Komoto S, Guntapong R, Ide T, Singchai P, Upachai S, Fukuda S, Yoshida Y, Murata T, Yoshikawa T, Ruchusatsawat K, Motomura K, Takeda N, Sangkitporn S, Taniguchi K (2018) Characterization of a G10P[14] rotavirus strain from a diarrheic child in Thailand: evidence for bovine-to-human zoonotic transmission. Infect Genet Evol 63:43–57.  https://doi.org/10.1016/j.meegid.2018.05.009 CrossRefGoogle Scholar
  7. 7.
    Luchs A, Cilli A, Morillo SG, Carmona Rde C, Timenetsky Mdo C (2012) Rare G3P[3] rotavirus strain detected in Brazil: possible human-canine interspecies transmission. J Clin Virol 54(1):89–92.  https://doi.org/10.1016/j.jcv.2012.01.025 CrossRefGoogle Scholar
  8. 8.
    Ianiro G, Di Bartolo I, De Sabato L, Pampiglione G, Ruggeri FM, Ostanello F (2017) Detection of uncommon G3P[3] rotavirus A (RVA) strain in rat possessing a human RVA-like VP6 and a novel NSP2 genotype. Infect Genet Evol 53:206–211.  https://doi.org/10.1016/j.meegid.2017.06.008 CrossRefGoogle Scholar
  9. 9.
    Kikuchi W, Nakagomi T, Gauchan P, Agbemabiese CA, Noguchi A, Nakagomi O, Takahashi T (2018) Detection in Japan of an equine-like G3P[8] reassortant rotavirus A strain that is highly homologous to European strains across all genome segments. Arch Virol 163(3):791–794.  https://doi.org/10.1007/s00705-017-3668-7 CrossRefGoogle Scholar
  10. 10.
    Navarro R, Aung MS, Cruz K, Ketzis J, Gallagher CA, Beierschmitt A, Malik YS, Kobayashi N, Ghosh S (2017) Whole genome analysis provides evidence for porcine-to-simian interspecies transmission of rotavirus-A. Infect Genet Evol 49:21–31.  https://doi.org/10.1016/j.meegid.2016.12.026 CrossRefGoogle Scholar
  11. 11.
    Marthaler D, Suzuki T, Rossow K, Culhane M, Collins J, Goyal S, Tsunemitsu H, Ciarlet M, Matthijnssens J (2014) VP6 genetic diversity, reassortment, intragenic recombination and classification of rotavirus B in American and Japanese pigs. Vet Microbiol 172(3–4):359–366.  https://doi.org/10.1016/j.vetmic.2014.05.015 CrossRefGoogle Scholar
  12. 12.
    Martinez-Laso J, Roman A, Rodriguez M, Cervera I, Head J, Rodriguez-Avial I, Picazo JJ (2009) Diversity of the G3 genes of human rotaviruses in isolates from Spain from 2004 to 2006: cross-species transmission and inter-genotype recombination generates alleles. J Gen Virol 90(Pt 4):935–943.  https://doi.org/10.1099/vir.0.007807-0 CrossRefGoogle Scholar
  13. 13.
    Esona MD, Roy S, Rungsrisuriyachai K, Sanchez J, Vasquez L, Gomez V, Rios LA, Bowen MD, Vazquez M (2017) Characterization of a triple-recombinant, reassortant rotavirus strain from the Dominican Republic. J Gen Virol 98(2):134–142.  https://doi.org/10.1099/jgv.0.000688 CrossRefGoogle Scholar
  14. 14.
    Donker NC, Boniface K, Kirkwood CD (2011) Phylogenetic analysis of rotavirus A NSP2 gene sequences and evidence of intragenic recombination. Infect Genet Evol 11(7):1602–1607.  https://doi.org/10.1016/j.meegid.2011.05.024 CrossRefGoogle Scholar
  15. 15.
    Jere KC, Mlera L, O’Neill HG, Peenze I, van Dijk AA (2012) Whole genome sequence analyses of three African bovine rotaviruses reveal that they emerged through multiple reassortment events between rotaviruses from different mammalian species. Vet Microbiol 159(1–2):245–250.  https://doi.org/10.1016/j.vetmic.2012.03.040 CrossRefGoogle Scholar
  16. 16.
    Maes P, Matthijnssens J, Rahman M, Van Ranst M (2009) RotaC: a web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol 9:238.  https://doi.org/10.1186/1471-2180-9-238 CrossRefGoogle Scholar
  17. 17.
    Kumar M, Jayaram H, Vasquez-Del Carpio R, Jiang X, Taraporewala ZF, Jacobson RH, Patton JT, Prasad BV (2007) Crystallographic and biochemical analysis of rotavirus NSP2 with nucleotides reveals a nucleoside diphosphate kinase-like activity. J Virol 81(22):12272–12284.  https://doi.org/10.1128/JVI.00984-07 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Danyu Chen
    • 1
  • Long Zhou
    • 1
  • Yiming Tian
    • 1
  • Xuan Wu
    • 1
  • Lan Feng
    • 1
  • Xiping Zhang
    • 1
  • Zhihui Liu
    • 1
  • Shurui Pang
    • 1
  • Runmin Kang
    • 2
  • Jifeng Yu
    • 2
  • Yonggang Ye
    • 2
  • Hongning Wang
    • 1
  • Xin Yang
    • 1
    Email author
  1. 1.Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life SciencesSichuan UniversityChengduPeople’s Republic of China
  2. 2.Sichuan Animal Science AcademySichuan Provincial Key laboratory of Animal Breeding and GeneticsChengduPeople’s Republic of China

Personalised recommendations