Advertisement

Archives of Virology

, Volume 164, Issue 4, pp 1069–1083 | Cite as

Invasion of a murine in vitro blood-brain barrier co-culture model by dengue virus serotypes 1 to 4

  • Fakhriedzwan IdrisEmail author
  • Siti Hanna Muharram
  • Zainun Zaini
  • Sylvie Alonso
  • Suwarni Diah
Original Article
  • 150 Downloads

Abstract

The blood-brain barrier (BBB) is a physical barrier that restricts the passage of cells and molecules as well as pathogens into the central nervous system (CNS). Some viruses enter the CNS by disrupting the BBB, while others can reach the CNS without altering the integrity of the BBB. Even though dengue virus (DENV) is not a distinctive neurotropic virus, the virus is considered to be one of the leading causes of neurological manifestations. In this study, we found that DENV is able to compromise the integrity of a murine in vitro blood-brain barrier (BBB) model, resulting in hyperpermeability, as shown by a significant increase in sucrose and albumin permeability. Infection of brain endothelial cells (ECs) was facilitated by the presence of glycans, in particular, mannose and N-acetyl glucosamine residues, on cell surfaces and viral envelope proteins, and the requirement for glycan moieties for cell infection was serotype-specific. Direct viral disruption of brain ECs was observed, leading to a significant decrease in tight-junction protein expression and peripheral localization, which contributed to the changes in BBB permeability. In conclusion, the hyperpermeability and breaching mechanism of BBB by DENV are primarily due to direct consequences of viral infection of ECs, as shown in this in vitro study.

Notes

Acknowledgements

This work is supported by Universiti Brunei Darussalam. Idris F is a recipient of the Graduate Research Scholarships (GRS), Universiti Brunei Darussalam.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

705_2019_4175_MOESM1_ESM.pdf (174 kb)
Supplementary material 1 (PDF 175 kb)

References

  1. 1.
    Pardridge WM (1999) Blood-brain barrier biology and methodology. J Neurovirol 5:556–569CrossRefGoogle Scholar
  2. 2.
    Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25CrossRefGoogle Scholar
  3. 3.
    Spindler KR, Hsu TH (2012) Viral disruption of the blood-brain barrier. Trends Microbiol 20:282–290CrossRefGoogle Scholar
  4. 4.
    Gralinski LE, Ashley SL, Dixon SD, Spindler KR (2009) Mouse adenovirus type 1-induced breakdown of the blood-brain barrier. J Virol 83:9398–9410CrossRefGoogle Scholar
  5. 5.
    Erbar S, Maisner A (2010) Nipah virus infection and glycoprotein targeting in endothelial cells. Virol J 7:305CrossRefGoogle Scholar
  6. 6.
    McMinn PC, Dalgarno L, Weir RC (1996) A comparison of the spread of Murray Valley encephalitis viruses of high or low neuroinvasiveness in the tissues of Swiss mice after peripheral inoculation. Virology 220:414–423CrossRefGoogle Scholar
  7. 7.
    King NJ, Getts DR, Getts MT, Rana S, Shrestha B, Kesson AM (2007) Immunopathology of flavivirus infections. Immunol Cell Biol 85:33–42CrossRefGoogle Scholar
  8. 8.
    Bai F, Kong KF, Dai J, Qian F, Zhang L, Brown CR, Fikrig E, Montgomery RR (2010) A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J Infect Dis 202:1804–1812CrossRefGoogle Scholar
  9. 9.
    Verma S, Lo Y, Chapagain M, Lum S, Kumar M, Gurjav U, Luo H, Nakatsuka A, Nerurkar VR (2009) West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood-brain barrier. Virology 385:425–433CrossRefGoogle Scholar
  10. 10.
    Misra UK, Kalita J (2010) Overview: Japanese encephalitis. Prog Neurobiol 91:108–120CrossRefGoogle Scholar
  11. 11.
    Aleyas AG, George JA, Han YW, Rahman MM, Kim SJ, Han SB, Kim BS, Kim K, Eo SK (2009) Functional modulation of dendritic cells and macrophages by Japanese encephalitis virus through MyD88 adaptor molecule-dependent and -independent pathways. J Immunol 183:2462–2474CrossRefGoogle Scholar
  12. 12.
    Cao S, Li Y, Ye J, Yang X, Chen L, Liu X, Chen H (2011) Japanese encephalitis virus wild strain infection suppresses dendritic cells maturation and function, and causes the expansion of regulatory T cells. Virol J 8:39CrossRefGoogle Scholar
  13. 13.
    Chen ST, Liu RS, Wu MF, Lin YL, Chen SY, Tan DT, Chou TY, Tsai IS, Li L, Hsieh SL (2012) CLEC5A regulates Japanese encephalitis virus-induced neuroinflammation and lethality. PLoS Pathog 8:e1002655CrossRefGoogle Scholar
  14. 14.
    Solomon T, Dung NM, Vaughn DW, Kneen R, Thao LT, Raengsakulrach B, Loan HT, Day NP, Farrar J, Myint KS, Warrell MJ, James WS, Nisalak A, White NJ (2000) Neurological manifestations of dengue infection. Lancet 255:1053–1059CrossRefGoogle Scholar
  15. 15.
    Carod-Artal FJ, Wichmann O, Farrar J, Gascón J (2013) Neurological complications of dengue virus infection. Lancet Neurol 12:906–919CrossRefGoogle Scholar
  16. 16.
    Dalrymple NA, Mackow ER (2012) Roles for endothelial cells in dengue virus infection. Adv Virol 2012:840654CrossRefGoogle Scholar
  17. 17.
    Cardier JE, Mariño E, Romano E, Taylor P, Liprandi F, Bosch N, Rothman AL (2005) Proinflammatory factors present in sera from patients with acute dengue infection induce activation and apoptosis of human microvascular endothelial cells: possible role of TNF-alpha in endothelial cell damage in dengue. Cytokine 30:359–365CrossRefGoogle Scholar
  18. 18.
    Lin CF, Wan SW, Chen MC, Lei HY, Lin YS (2007) Increased dengue virus-infected endothelial cell apoptosis caused by antibodies against nonstructural protein 1. Den Bull 31:111–117Google Scholar
  19. 19.
    Hapuarachchi HC, Chua RC, Shi Y, Thein TL, Lee LK, Lee KS, Lye DC, Ng LC, Leo YS (2015) Clinical outcome and genetic differences within a monophyletic Dengue virus type 2 population. PLoS One 10:e0121696CrossRefGoogle Scholar
  20. 20.
    Chaturvedi UC, Dhawan R, Khanna M, Mathur A (1991) Breakdown of the blood-brain barrier during dengue virus infection of mice. J Gen Virol 72:859–866CrossRefGoogle Scholar
  21. 21.
    Velandia-Romero ML, Acosta-Losada O, Castellanos JE (2012) In vivo infection by neuroinvasive neuro-virulent dengue virus. J Neurovirol 18:374–387CrossRefGoogle Scholar
  22. 22.
    Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50CrossRefGoogle Scholar
  23. 23.
    Takata F, Dohgu S, Yamauchi A, Matsumoto J, Machida T, Fujishita K, Shibata K, Shinozaki Y, Sato K, Kataoka Y, Koizumi S (2013) In vitro blood-brain barrier models using brain capillary endothelial cells isolated from neonatal and adult rats retain age-related barrier properties. PLoS One 8:e55166CrossRefGoogle Scholar
  24. 24.
    Zhang Z, McGoron AJ, Crumpler ET, Li C (2011) Co-culture based blood-brain barrier in vitro model, a tissue engineering approach using immortalized cell lines for drug transport study. Appl Biochem Biotechnol 163:278–295CrossRefGoogle Scholar
  25. 25.
    Hubatsch I, Ragnarsson EG, Artursson P (2007) Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2:2111–2119CrossRefGoogle Scholar
  26. 26.
    Rosas-Arellano A, Villalobos-González JB, Palma-Tirado L, Beltrán FA, Cárabez-Trejo A, Missirlis F, Castro MA (2016) A simple solution for antibody signal enhancement in immunofluorescence and triple immunogold assay. Histochem Cell Biol 146:421–430CrossRefGoogle Scholar
  27. 27.
    McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A (2014) Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13:1400–1412CrossRefGoogle Scholar
  28. 28.
    Alen MMF, De Burghgraeve T, Kaptein SJF, Balzarini J, Neyts J, Schols D (2011) Broad antiviral activity of carbohydrate-binding agents against the four serotypes of dengue virus in monocyte-derived dendritic cells. PloS One 6:e21658CrossRefGoogle Scholar
  29. 29.
    Malenovska H (2013) Virus quantitation by transmission electron microscopy, TCID50, and the role of timing virus harvesting: a case study of three animal viruses. J Virol Methods 191:136–140CrossRefGoogle Scholar
  30. 30.
    Cummings BS, Wills LP, Schnellmann RG (2012) Measurement of cell death in mammalian cells. Curr Protoc Pharmacol 12(12):8Google Scholar
  31. 31.
    Noguiera RM, Schatzmayr HG, de Filippis AM, dos Santos FB, da Cunha RV, Coelho JO, de Souza LJ, Guimarães FR, de Araújo ES, De Simone TS, Baran M, Teixeira G Jr, Miagostovich MP (2005) Dengue virus type 3, Brazil, 2002. Emerg Infect Dis 11:1376–1381CrossRefGoogle Scholar
  32. 32.
    Balsitis SJ, Coloma J, Castro G, Alava A, Flores D, McKerrow JH, Beatty PR, Harris E (2009) Tropism of dengue virus in mice and humans defined by viral non-structural protein 3-specific immunostaining. Am J Trop Med Hyg 80:416–424CrossRefGoogle Scholar
  33. 33.
    De Araújo JM, Schatzmayr HG, de Pilippis AM, Dos Santos FB, Cardoso MA, Britto C, Coelho JM, Nogueira RM (2009) A retrospective survey of dengue virus infection in fatal cases from an epidemic in Brazil. J Virol Methods 155:34–38CrossRefGoogle Scholar
  34. 34.
    Jessie K, Fong MY, Devi S, Lam SK, Wong KT (2004) Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189:1411–1418CrossRefGoogle Scholar
  35. 35.
    Avirutnan P, Malasit P, Seliger B, Bhakdi S, Husmann M (1998) Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J Immunol 161:6338–6346Google Scholar
  36. 36.
    Chen HC, Hofman FM, Kung JT, Lin YD, Wu-Hsieh BA (2007) Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced haemorrhage. J Virol 81:5518–5526CrossRefGoogle Scholar
  37. 37.
    Oliveira ER, Amorim JF, Paes MV, Azevedo AS, Goncalves AJ, Costa SM, Mantuano-Barradas M, Póvoa TF, de Meis J, Basílio-de-Oliveira CA, Nogueira AC, Alves AM (2016) Peripheral effects induced in BALB/c mice infected with DENV by the intracerebral route. Virology 489:95–107CrossRefGoogle Scholar
  38. 38.
    Velandia-Romero ML, Calderón-Peláez MA, Castellanos JE (2016) In vitro infection with dengue virus induces changes in the structure and function of the mouse brain endothelium. PLoS One 11:e0157786CrossRefGoogle Scholar
  39. 39.
    Imbert J, Guevera P, Ramos-Castañeda J, Ramos C, Sotelo J (1994) Dengue virus infects mouse cultured neurons but not astrocytes. J Med Virol 42:228–233CrossRefGoogle Scholar
  40. 40.
    Elena SF (2002) Restrictions to RNA virus adaptation: an experimental approach. Antonie Van Leeuwenhoek 81:135–142CrossRefGoogle Scholar
  41. 41.
    Whitehorn J, Simmons CP (2011) The pathogenesis of dengue. Vaccine 29:7221–7228CrossRefGoogle Scholar
  42. 42.
    Hussmann KL, Fredericksen BL (2014) Differential induction of CCL5 by pathogenic and non-pathogenic strains of West Nile virus in brain endothelial cells and astrocytes. J Gen Virol 95:862–867CrossRefGoogle Scholar
  43. 43.
    Desprès P, Plamand M, Ceccaldi PE, Deubel V (1996) Human isolates of dengue type 1 virus induce apoptosis in mouse neuroblastoma cells. J Virol 70:4090–4096Google Scholar
  44. 44.
    Jan JT, Chen BH, Ma SH, Liu CI, Tsai HP, Wu HC, Jiang SY, Yang KD, Shaio MF (2000) Potential dengue virus-triggered apoptotic pathway in human neuroblastoma cells: arachidonic acid, superoxide anion, and NF-kappaB are sequentially involved. J Virol 74:8680–8691CrossRefGoogle Scholar
  45. 45.
    An J, Zhou DS, Kawasaki K, Yasui K (2003) The pathogenesis of spinal cord involvement in dengue virus infection. Virchows Arch 442:472–481Google Scholar
  46. 46.
    Sánchez-Burgos G, Hernández-Pando R, Campbell IL, Ramos-Castañeda J, Ramos C (2004) Cytokine production in brain of mice experimentally infected with dengue virus. Neuroreport 15:37–42CrossRefGoogle Scholar
  47. 47.
    Ho MR, Tsai TT, Chen CL, Jhan MK, Tsai CC, Lee YC, Chen CH, Lin CF (2017) Blockade of dengue virus infection and viral cytotoxicity in neuronal cells in vitro and in vivo by targeting endocytic pathways. Sci Rep 7:6910CrossRefGoogle Scholar
  48. 48.
    Chimelli L, Hahn MD, Netto MB, Ramos RG, Dias M, Gray F (1990) Dengue: neuropathological findings in 5 fatal cases from Brazil. Clin Neuropathol 9:157–162Google Scholar
  49. 49.
    Martínez-Barragán JJ, del Angel RM (2001) Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J Virol 75:7818–7827CrossRefGoogle Scholar
  50. 50.
    Wichit S, Jittmittraphap A, Hidari KI, Thaisomboonsuk B, Petmitr S, Ubol S, Aoki C, Itonori S, Morita K, Suzuki T, Suzuki Y, Jampangern W (2011) Dengue virus type 2 recognizes the carbohydrate moiety of neutral glycosphingolipids in mammalian and mosquito cells. Microbiol Immuno. 55:135–140CrossRefGoogle Scholar
  51. 51.
    Hidari KI, Suzuki T (2011) Antiviral agents targeting glycans on dengue virus E-glycoprotein. Expert Rev Anti Infect Ther 9:983–985CrossRefGoogle Scholar
  52. 52.
    Alen MM, Dallmeier K, Balzarini J, Neyts J, Schols D (2012) Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN mediated dengue virus infection. Antiviral Res 96:280–287CrossRefGoogle Scholar
  53. 53.
    Hacker K, White L, de Silva AM (2009) N-linked glycans on dengue viruses grown in mammalian and insect cells. J Gen Virol 90:2097–2106CrossRefGoogle Scholar
  54. 54.
    Mondotte JA, Lozach PY, Amara A, Gamarnik AV (2007) Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol 81:7136–7148CrossRefGoogle Scholar
  55. 55.
    Smith GW, Wright PJ (1985) Synthesis of proteins and glycoproteins in dengue type 2 virus-infected vero and Aedes albopictus cells. J Gen Virol 66:559–571CrossRefGoogle Scholar
  56. 56.
    Johnson AJ, Guirakhoo F, Roehrig JT (1994) The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology 203:241–249CrossRefGoogle Scholar
  57. 57.
    Hung SL, Lee PL, Chen LK, Kao CL, King CC (1999) Analysis of the steps involved in Dengue virus entry into host cells. Virology 257:156–167CrossRefGoogle Scholar
  58. 58.
    Ishak H, Takegami T, Kamimura K, Funada H (2001) Comparative sequences of two type 1 dengue virus strains possessing different growth characteristics in vitro. Microbiol Immunol 45:327–331CrossRefGoogle Scholar
  59. 59.
    Guirakhoo F, Hunt AR, Lewis JG, Roehrig JT (1993) Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology 194:219–223CrossRefGoogle Scholar
  60. 60.
    Kawano H, Rostapshov V, Rosen L, Lai CJ (1993) Genetic determinants of dengue type 4 virus neurovirulence for mice. J Virol 67:6567–6575Google Scholar
  61. 61.
    Sanchez IJ, Ruiz BH (1996) A single nucleotide change in the E protein gene of dengue virus 2 Mexican strain affects neurovirulence in mice. J Gen Virol 77:2541–2545CrossRefGoogle Scholar
  62. 62.
    Chu MC, O’Rourke EJ, Trent DW (1989) Genetic relatedness among structural protein genes of dengue 1 virus strains. J Gen Virol 70:1701–1712CrossRefGoogle Scholar
  63. 63.
    Osatomi K, Sumiyoshi H (1990) Complete nucleotide sequence of dengue type 3 virus genome RNA. Virology 176:643–647CrossRefGoogle Scholar
  64. 64.
    Deubel V, Kinney RM, Trent DW (1988) Nucleotide sequence and deduced amino-acid sequence of the nonstructural proteins of dengue type 2 virus, Jamaica genotype: comparative analysis of the full-length genome. Virology 165:234–244CrossRefGoogle Scholar
  65. 65.
    Zhao B, Mackow E, Buckler-White A, Markoff L, Chanock RM, Lai CJ, Makino Y (1986) Cloning full length dengue type 4 viral DNA sequences: analysis of genes coding for structural proteins. Virology 156:77–88CrossRefGoogle Scholar
  66. 66.
    Pokidysheva E, Zhang Y, Battisti AJ, Bator-Kelly CM, Chipman PR, Xiao C, Gregorio GG, Hendrickson WA, Kuhn RJ, Rossmann MG (2006) Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124:485–493CrossRefGoogle Scholar
  67. 67.
    Bryant JE, Calvert AE, Mesesan K, Crabtree MB, Volpe KE, Silengo S, Kinney RM, Huang CYH, Miller BR, Roehrig JT (2007) Glycosylation of the dengue 2 virus E protein ay N67 is critical for the virus growth in vitro but not for growth in intrathoracically inoculated Aedes aegypti mosquitoes. Virology 366:415–423CrossRefGoogle Scholar
  68. 68.
    Kanmogne GD, Schall K, Leibhart J, Knipe B, Gendelman HE, Persidsky Y (2007) HIV-1 gp120 compromises blood-brain barrier integrity and enhances monocyte migration across blood-brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab 27:123–134CrossRefGoogle Scholar
  69. 69.
    Chaudhuri A, Yang B, Gendelman HE, Persidsky Y, Kanmogne GD (2008) STAT1 signaling modulates HIV-1-induced inflammatory responses and leukocyte transmigration across the blood-brain barrier. Blood 111:2062–2072CrossRefGoogle Scholar
  70. 70.
    Mahajan SD, Aalinkeei R, Sykes DE, Reynolds JL, Bindukumar B, Adal A, Qi M, Toh J, Xu G, Prasad PN, Schwartz SA (2008) Methamphetamine alters blood brain barrier permeability via the modulation of tight junction expression: implication for HIV-1 neuropathogenesis in the context of drug abuse. Brain Res 1203:133–148CrossRefGoogle Scholar
  71. 71.
    Vásquez Ochoa M, García Cordero J, Gutiérrez Castañeda B, Santos Argumedo L, Villegas Sepúlveda N, Cedillo Barrón L (2009) A clinical isolate of dengue virus and its proteins induce apoptosis in HMEC-1 cells: a possible implication in pathogenesis. Arch Virol 154:919–928CrossRefGoogle Scholar
  72. 72.
    Hellinger E, Veszelka S, Tóth AE, Walter F, Kittel A, Bakk ML, Tihanyi K, Háda V, Nakagawa S, Duy TD, Niwa M, Deli MA, Vastag M (2012) Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Eur J Pharm Biopharm 82:340–351CrossRefGoogle Scholar
  73. 73.
    Liu P, Woda M, Ennis FA, Libraty DH (2009) Dengue virus infection differentially regulates endothelial barrier function over time through type I interferon effects. J Infect Dis 200:191–201CrossRefGoogle Scholar
  74. 74.
    Talavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I (2004) IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. J Gen Virol 85:1801–1813CrossRefGoogle Scholar
  75. 75.
    Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonherd V (2009) Alterations in actin cytoskeletal assembly and junctional protein complexes in human endothelial cells induced by dengue virus infection and mimicry of leukocyte transendothelial migration. J Proteome Res 8:2551–2562CrossRefGoogle Scholar
  76. 76.
    Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, Achim CL (1999) Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol 155:1915–1927CrossRefGoogle Scholar
  77. 77.
    Diamond MS, Klein RS (2004) West Nile Virus: crossing the blood-brain barrier. Nat Med 10:1294–1295CrossRefGoogle Scholar
  78. 78.
    András IE, Toborek M (2011) HIV-1-induced alterations of claudin-5 expression at the blood-brain barrier level. Methods Mol Biol 762:355–370CrossRefGoogle Scholar
  79. 79.
    Luabeya MK, Dallasta LM, Achim CL, Pauza CD, Hamilton RL (2000) Blood-brain barrier disruption in simian immunodeficiency virus encephalitis. Neuropathol Appl Neurobiol 26:454–462CrossRefGoogle Scholar
  80. 80.
    Bentz GL, Jarguin-Pardo M, Chan G, Smith MS, Sinzger C, Yurochko AD (2006) Human cytomegalovirus (HCMV) infection of endothelial cells promotes naïve monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV. J Virol 80:11539–11555CrossRefGoogle Scholar
  81. 81.
    Afonso PV, Ozden S, Prevost MC, Schmitt C, Seilhean D, Weksler B, Couraud PO, Gessain A, Romero IA, Ceccaldi PE (2007) Human blood-brain barrier disruption by retroviral-infected lymphocytes: role of myosin light chain kinase in endothelial tight-junction disorganization. J Immunol 179:2576–2583CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Programme Life Sciences InstituteNational University of SingaporeSingaporeSingapore
  2. 2.Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health SciencesUniversiti Brunei DarussalamGadongBrunei Darussalam
  3. 3.Virology Laboratory, Clinical Laboratory ServicesMinistry of HealthGadongBrunei Darussalam

Personalised recommendations