Advertisement

Archives of Virology

, Volume 164, Issue 4, pp 1059–1067 | Cite as

Viral metagenomics reveals significant viruses in the genital tract of apparently healthy dairy cows

  • Yu Ling
  • Xiaodan Zhang
  • Guilan Qi
  • Shixing Yang
  • Li Jingjiao
  • Quan Shen
  • Xiaochun Wang
  • Li Cui
  • Xiuguo HuaEmail author
  • Xutao Deng
  • Eric Delwart
  • Wen ZhangEmail author
Original Article
  • 76 Downloads

Abstract

The virome in genital tract secretion samples collected from 80 dairy cattle in Shanghai, China, was characterized. Viruses detected included members of the families Papillomaviridae, Polyomaviridae, Hepeviridae, Parvoviridae, Astroviridae, Picornaviridae, and Picobirnaviridae. A member of a new species within the genus Dyoxipapillomavirus and six circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) viral genomes were fully sequenced and phylogenetically analyzed. The prevalence of bovine polyomaviruses 1 and 2 was measured by PCR to be 10% (8/80) and 6.25% (5/80), respectively. PCR screening also indicated that the novel papillomavirus ujs-21015 and bovine herpesvirus 6 were present in three and two out of the 80 samples, respectively.

Notes

Acknowledgments

This work was partly supported by National Key Research and Development Programs of China no. 2017YFC1200201, Jiangsu Provincial Key Research and Development Projects no. BE2017693, National Natural Science Foundation of China nos. 81741062 and 31572525, Taizhou Science and Technology Support Project no. TS201623, Key Research and Development Plan of Zhenjiang no. SH2016060, and Blood Systems Research Institute.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study did not include experiments with human participants or animals performed by any of the authors.

Supplementary material

705_2019_4158_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 33 kb)

Reference

  1. 1.
    Nekouei O, VanLeeuwen J, Stryhn H et al (2016) Lifetime effects of infection with bovine leukemia virus on longevity and milk production of dairy cows. Prev Vet Med 133:1–9.  https://doi.org/10.1016/j.prevetmed.2016.09.011 CrossRefGoogle Scholar
  2. 2.
    Gethmann J, Homeier T, Holsteg M et al (2015) BVD-2 outbreak leads to high losses in cattle farms in Western Germany. Heliyon 1:e00019.  https://doi.org/10.1016/j.heliyon.2015.e00019 CrossRefGoogle Scholar
  3. 3.
    Favier PA, Marin MS, Pérez SE (2012) Role of bovine herpesvirus type 5 (BoHV-5) in diseases of cattle. Recent findings on BoHV-5 association with genital disease. Open Vet J 2:46–53Google Scholar
  4. 4.
    Sharma H, Tal R, Clark NA, Segars JH (2014) Microbiota and pelvic inflammatory disease. Semin Reprod Med 32:43–49.  https://doi.org/10.1055/s-0033-1361822 CrossRefGoogle Scholar
  5. 5.
    Hou P, Zhao G, Wang H, He H (2018) Prevalence of bovine viral diarrhea virus in dairy cattle herds in eastern China. Trop Anim Health Prod.  https://doi.org/10.1007/s11250-018-1751-z
  6. 6.
    Hou P, Wang H, Zhao G et al (2017) Rapid detection of infectious bovine Rhinotracheitis virus using recombinase polymerase amplification assays. BMC Vet Res 13:386.  https://doi.org/10.1186/s12917-017-1284-0 CrossRefGoogle Scholar
  7. 7.
    Yang Y, Fan W, Mao Y et al (2016) Bovine leukemia virus infection in cattle of China: Association with reduced milk production and increased somatic cell score. J Dairy Sci 99:3688–3697.  https://doi.org/10.3168/jds.2015-10580 CrossRefGoogle Scholar
  8. 8.
    Chang J, Wang Q, Wang F et al (2014) Prevalence and genetic diversity of bovine kobuvirus in China. Arch Virol 159:1505–1510.  https://doi.org/10.1007/s00705-013-1961-7 CrossRefGoogle Scholar
  9. 9.
    Zhang W, Hu J, Yan S et al (2015) Sequence and Structural Analyses of the Complete Genome of Bovine Papillomavirus 2 Genotype Aks-01 Strain from Skin Samples of Cows in Southern Xinjiang, China. Bing Du Xue Bao (Chinese J Virol) 31:370–378Google Scholar
  10. 10.
    Lu G, Jia K, Ping X et al (2018) Novel bovine hepacivirus in dairy cattle, China. Emerg Microbes Infect 7:54.  https://doi.org/10.1038/s41426-018-0055-8 Google Scholar
  11. 11.
    Wang H, Li S, Mahmood A et al (2018) Plasma virome of cattle from forest region revealed diverse small circular ssDNA viral genomes. Virol J 15:11.  https://doi.org/10.1186/s12985-018-0923-9 CrossRefGoogle Scholar
  12. 12.
    Li L, Deng X, Mee ET et al (2014) Comparing viral metagenomics methods using a highly multiplexed human viral pathogens reagent. J Virol Methods 213C:139–146.  https://doi.org/10.1016/j.jviromet.2014.12.002 Google Scholar
  13. 13.
    Zhang W, Li L, Deng X et al (2016) Viral nucleic acids in human plasma pools. Transfusion 56:2248–2255.  https://doi.org/10.1111/trf.13692 CrossRefGoogle Scholar
  14. 14.
    Deng X, Naccache SN, Ng T et al (2015) An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkv002
  15. 15.
    Zhang W, Yang S, Shan T et al (2017) Virome comparisons in wild-diseased and healthy captive giant pandas. Microbiome 5:90.  https://doi.org/10.1186/s40168-017-0308-0 CrossRefGoogle Scholar
  16. 16.
    Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948.  https://doi.org/10.1093/bioinformatics/btm404 CrossRefGoogle Scholar
  17. 17.
    Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefGoogle Scholar
  18. 18.
    Munday JS, Thomson N, Dunowska M, Knight CG, Laurie REHS (2015) Genomic characterisation of the feline sarcoid-associated papillomavirus and proposed classification as Bos taurus papillomavirus type 14.—PubMed—NCBI. Vet Microbiol 177:289–295CrossRefGoogle Scholar
  19. 19.
    Steel O, Kraberger S, Sikorski A et al (2016) Circular replication-associated protein encoding DNA viruses identified in the faecal matter of various animals in New Zealand. Infect Genet Evol 43:151–164.  https://doi.org/10.1016/j.meegid.2016.05.008 CrossRefGoogle Scholar
  20. 20.
    Woo PCY, Lau SKP, Teng JLL et al (2014) Metagenomic analysis of viromes of dromedary camel fecal samples reveals large number and high diversity of circoviruses and picobirnaviruses. Virology 471–473:117–125.  https://doi.org/10.1016/j.virol.2014.09.020 CrossRefGoogle Scholar
  21. 21.
    Kim HK, Park SJ, Nguyen VG et al (2012) Identification of a novel single-stranded, circular DNA virus from bovine stool. J Gen Virol 93:635–639.  https://doi.org/10.1099/vir.0.037838-0 CrossRefGoogle Scholar
  22. 22.
    Dayaram A, Potter KA, Pailes R et al (2015) Identification of diverse circular single-stranded DNA viruses in adult dragonflies and damselflies (Insecta: Odonata) of Arizona and Oklahoma, USA. Infect Genet Evol 30:278–287.  https://doi.org/10.1016/j.meegid.2014.12.037 CrossRefGoogle Scholar
  23. 23.
    Gräfe D, Ehlers B, Mäde D et al (2017) Detection and genome characterization of bovine polyomaviruses in beef muscle and ground beef samples from Germany. Int J Food Microbiol 241:168–172.  https://doi.org/10.1016/j.ijfoodmicro.2016.10.024 CrossRefGoogle Scholar
  24. 24.
    Peretti A, FitzGerald PC, Bliskovsky V et al (2015) Hamburger polyomaviruses. J Gen Virol 96:833–839.  https://doi.org/10.1099/vir.0.000033 CrossRefGoogle Scholar
  25. 25.
    Jia J, Delhon G, Tulman ER et al (2014) Novel gammaherpesvirus functions encoded by bovine herpesvirus 6 (bovine lymphotropic virus). J Gen Virol 95:1790–1798.  https://doi.org/10.1099/vir.0.066951-0 CrossRefGoogle Scholar
  26. 26.
    Munday JS (2014) Bovine and human papillomaviruses: a comparative review. Vet Pathol 51:1063–1075.  https://doi.org/10.1177/0300985814537837 CrossRefGoogle Scholar
  27. 27.
    Elzein ETE, Sundberg JP, Housawi FM et al (1991) Genital bovine papillomavirus infection in Saudi Arabia. J Vet Diagn Invest 3:36–38.  https://doi.org/10.1177/104063879100300108 CrossRefGoogle Scholar
  28. 28.
    Bernard H-U, Burk RD, Chen Z et al (2010) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79.  https://doi.org/10.1016/j.virol.2010.02.002 CrossRefGoogle Scholar
  29. 29.
    Joh J, Jenson AB, King W et al (2011) Genomic analysis of the first laboratory-mouse papillomavirus. J Gen Virol 92:692–698.  https://doi.org/10.1099/vir.0.026138-0 CrossRefGoogle Scholar
  30. 30.
    Delwart E, Li L (2012) Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes. Virus Res 164:114–121.  https://doi.org/10.1016/j.virusres.2011.11.021 CrossRefGoogle Scholar
  31. 31.
    Rosario K, Duffy S, Breitbart M (2012) A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch Virol 157:1851–1871.  https://doi.org/10.1007/s00705-012-1391-y CrossRefGoogle Scholar
  32. 32.
    Dunlap DS, Ng TFF, Rosario K et al (2013) Molecular and microscopic evidence of viruses in marine copepods. Proc Natl Acad Sci 110:1375–1380.  https://doi.org/10.1073/pnas.1216595110 CrossRefGoogle Scholar
  33. 33.
    Ng T, Alavandi S, Varsani A et al (2013) Metagenomic identification of a nodavirus and a circular ssDNA virus in semi-purified viral nucleic acids from the hepatopancreas of healthy Farfantepenaeus duorarum shrimp. Dis Aquat Organ 105:237–242.  https://doi.org/10.3354/dao02628 CrossRefGoogle Scholar
  34. 34.
    Yu X, Li B, Fu Y et al (2010) A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci USA 107:8387–8392.  https://doi.org/10.1073/pnas.0913535107 CrossRefGoogle Scholar
  35. 35.
    Zawar-Reza P, Argüello-Astorga GR, Kraberger S et al (2014) Diverse small circular single-stranded DNA viruses identified in a freshwater pond on the McMurdo Ice Shelf (Antarctica). Infect Genet Evol 26:132–138.  https://doi.org/10.1016/j.meegid.2014.05.018 CrossRefGoogle Scholar
  36. 36.
    Rosario K, Dayaram A, Marinov M et al (2012) Diverse circular ssDNA viruses discovered in dragonflies (Odonata: Epiprocta). J Gen Virol 93:2668–2681.  https://doi.org/10.1099/vir.0.045948-0 CrossRefGoogle Scholar
  37. 37.
    Dayaram A, Potter KA, Moline AB et al (2013) High global diversity of cycloviruses amongst dragonflies. J Gen Virol 94:1827–1840.  https://doi.org/10.1099/vir.0.052654-0 CrossRefGoogle Scholar
  38. 38.
    Rosario K, Dayaram A, Marinov M et al (2012) Diverse circular ssDNA viruses discovered in dragonflies (Odonata: Epiprocta). J Gen Virol 93:2668–2681.  https://doi.org/10.1099/vir.0.045948-0 CrossRefGoogle Scholar
  39. 39.
    Sikorski A, Massaro M, Kraberger S et al (2013) Novel myco-like DNA viruses discovered in the faecal matter of various animals. Virus Res 177:209–216.  https://doi.org/10.1016/j.virusres.2013.08.008 CrossRefGoogle Scholar
  40. 40.
    Smits SL, Zijlstra EE, van Hellemond JJ et al (2013) Novel cyclovirus in human cerebrospinal fluid, Malawi, 2010–2011. Emerg Infect Dis 19:44.  https://doi.org/10.3201/eid1909.130404 CrossRefGoogle Scholar
  41. 41.
    Phan TG, Kapusinszky B, Wang C et al (2011) The fecal viral flora of wild rodents. PLoS Pathog 7:e1002218.  https://doi.org/10.1371/journal.ppat.1002218 CrossRefGoogle Scholar
  42. 42.
    Yogo Y, Sugimoto C, Zhong S, Homma Y (2009) Evolution of the BK polyomavirus: epidemiological, anthropological and clinical implications. Rev Med Virol 19:185–199.  https://doi.org/10.1002/rmv.613 CrossRefGoogle Scholar
  43. 43.
    Abend JR, Jiang M, Imperiale MJ (2009) BK virus and human cancer: Innocent until proven guilty. Semin Cancer Biol 19:252–260.  https://doi.org/10.1016/j.semcancer.2009.02.004 CrossRefGoogle Scholar
  44. 44.
    Zhang W, Li L, Deng X et al (2014) What is for dinner? Viral metagenomics of US store bought beef, pork, and chicken. Virology 468-470C:303–310.  https://doi.org/10.1016/j.virol.2014.08.025 CrossRefGoogle Scholar
  45. 45.
    Banks M, Ibata G, Murphy AM et al (2008) Bovine lymphotropic herpesvirus and non-responsive post-partum metritis in dairy herds in the UK. Vet J 176:248–250.  https://doi.org/10.1016/j.tvjl.2007.02.005 CrossRefGoogle Scholar
  46. 46.
    Gagnon CA, Allam O, Drolet R, Tremblay D (2010) Quebec: detection of bovine lymphotropic herpesvirus DNA in tissues of a bovine aborted fetus. Can Vet J (La Rev Vet Can) 51:1021–1022Google Scholar
  47. 47.
    Kubiś P, Materniak M, Kuźmak J (2013) Comparison of nested PCR and qPCR for the detection and quantitation of BoHV6 DNA. J Virol Methods 194:94–101.  https://doi.org/10.1016/j.jviromet.2013.08.006 CrossRefGoogle Scholar
  48. 48.
    Ganesh B, Masachessi G, Mladenova Z (2014) Animal picobirnavirus. Virus Dis 25:223–238.  https://doi.org/10.1007/s13337-014-0207-y CrossRefGoogle Scholar
  49. 49.
    Krishnamurthy SR, Wang D (2018) Extensive conservation of prokaryotic ribosomal binding sites in known and novel picobirnaviruses. Virology 516:108–114.  https://doi.org/10.1016/j.virol.2018.01.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Yu Ling
    • 1
  • Xiaodan Zhang
    • 2
  • Guilan Qi
    • 3
  • Shixing Yang
    • 1
  • Li Jingjiao
    • 4
  • Quan Shen
    • 1
  • Xiaochun Wang
    • 1
  • Li Cui
    • 4
  • Xiuguo Hua
    • 4
    Email author
  • Xutao Deng
    • 5
  • Eric Delwart
    • 5
    • 6
  • Wen Zhang
    • 1
    Email author
  1. 1.Department of Microbiology, School of MedicineJiangsu UniversityZhenjiangChina
  2. 2.Zhenjiang Center for Disease Prevention and ControlZhenjiangChina
  3. 3.Institute of Animal Husbandry, Chengdu Academy of Agriculture and Forestry SciencesChengduChina
  4. 4.School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
  5. 5.Blood Systems Research InstituteSan FranciscoUSA
  6. 6.Department of Laboratory MedicineUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations