Advertisement

Analysis of the efficacy of an adjuvant-based inactivated pandemic H5N1 influenza virus vaccine

  • Ainur NurpeisovaEmail author
  • Markhabat Kassenov
  • Nurkuisa Rametov
  • Kaissar Tabynov
  • Gourapura J. Renukaradhya
  • Yevgeniy Volgin
  • Altynay Sagymbay
  • Amanzhol Makbuz
  • Abylay Sansyzbay
  • Berik Khairullin
Original Article
  • 6 Downloads

Abstract

This paper describes a preclinical study analyzing the immunogenicity and protective efficacy of Kazfluvac®, an adjuvant-based inactivated pandemic influenza A/H5N1 virus vaccine. In this study, laboratory animals (ferrets and mice) were vaccinated by the intramuscular or intraperitoneal route at an interval of 14 days with two doses of the vaccine containing different concentrations of influenza virus hemagglutinin (HA) protein. HA protein without adjuvant (aluminum hydroxide and Merthiolate) was used as a control. As a negative control, we utilized PBS. We assessed the protective efficacy of the candidate vaccine by analyzing the response to challenge with the influenza virus strain A/chicken/Astana/6/05 (H5N1). Our experimental results revealed substantially reduced clinical disease and an increased antibody response, as determined by hemagglutination-inhibition (HAI) test and microneutralization assay (MNA). This study showed that the candidate vaccine is safe and elicits an antigen-dose-dependent serum antibody response. In summary, we determined the optimum antigen dose in a Kazfluvac® adjuvant formulation required for induction of heightened immunogenicity and protective efficacy to mitigate H5N1 disease in experimental animals, suggesting its readiness for clinical studies in humans.

Notes

Acknowledgements

We thank Zh. Kydyrbayev, Y. Kozhamkulov, D. Inkarbekov, Kairat Tabynov, and N. Assanzhanova, employees of the Research Institute for Biological Safety Problems, for their assistance in this study. The study was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan. The authors express deep gratitude to the Research Institute of Influenza (St. Petersburg, Russia) for providing the vaccine strain A/AstanaRG/6:2/2009 (H5N1) which was constructed by reverse genetics from the highly pathogenic avian influenza virus strain A/chicken/Astana/6/05 of (H5N1) and the highly reproductive influenza virus donor strain A/PR/8/34 (H1N1).

References

  1. 1.
    Capua I, Alexander DJ (2009) Avian influenza infection in birds: a challenge and opportunity for the poultry veterinarian. Poult Sci 88(4):842–846.  https://doi.org/10.3382/ps.2008-00289 CrossRefGoogle Scholar
  2. 2.
    Beigel JH, Farrar J, Han AM et al (2005) Avian influenza A (H5N1) infection in humans. N Engl J Med 353(13):1374–1385.  https://doi.org/10.1056/NEJMra052211 CrossRefGoogle Scholar
  3. 3.
    Fleming DM, Elliot AJ (2005) The impact of influenza on the health and health care utilisation of elderly people. Vaccine 23:1–9.  https://doi.org/10.1016/j.vaccine.2005.04.018 CrossRefGoogle Scholar
  4. 4.
    World Health Organization (2016) Cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO. http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/. Accessed 20 June 2018
  5. 5.
    Kydyrbaev ZhK, Tabynov KK, Khairullin BM (2015) Vysokopatogennyj gripp ptic: rasprostranenie v Kazahstane i razrabotka sredstv specificheskoj profilaktiki [Highly pathogenic avian influenza: distribution in Kazakhstan and development of means of specific prevention]. Almaty (in Russian) Google Scholar
  6. 6.
    Sansyzbay AR, Erofeeva MK, Khairullin BM et al (2013) Inactivated and adjuvanted whole virion clade 2.2 H5N1 (A/chicken/Astana/6/05) influenza vaccine is safe and immunogenic in a single dose in humans. Clin Vaccine Immunol 20(8):1314–1319.  https://doi.org/10.1128/CVI.00096-13 CrossRefGoogle Scholar
  7. 7.
    Stukova M, Mamadaliyev S, Sandybayev N et al (2011) Basic results of development of a production technology and control of a pandemic influenza A/H5N1 vaccine. Influenza Other Respir Viruses 5(1):350–353Google Scholar
  8. 8.
    Nurpeysova A, Khairullin B, Kassenov M et al (2011) Preclinical testing of Kazfluvac®, a vaccine against pandemic influenza A/H5N1v. J Pharm Biomed Sci 1(5):108–112Google Scholar
  9. 9.
    Langley JM, Frenette L, Ferguson L et al (2010) Safety and cross-reactive immunogenicity of candidate AS03-adjuvanted prepandemic H5N1 influenza vaccines: a randomized controlled phase 1/2 trial in adults. J Infect Dis 201(11):1644–1653.  https://doi.org/10.1086/652701 CrossRefGoogle Scholar
  10. 10.
    Li H, Nookala S, Re F (2007) Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1β and IL-18 release. J Immunol 178(8):5271–5276.  https://doi.org/10.4049/jimmunol.178.8.5271 CrossRefGoogle Scholar
  11. 11.
    Cox JC, Coulter AR (1997) Adjuvants—a classification and review of their modes of action. Vaccine 15(3):248–256.  https://doi.org/10.1016/S0264-410X(96)00183-1 CrossRefGoogle Scholar
  12. 12.
    Lambert LC, Fauci AS (2010) Influenza vaccines for the future. N Engl J Med 363(21):2036–2044.  https://doi.org/10.1056/NEJMra1002842 CrossRefGoogle Scholar
  13. 13.
    Bodewes R, Osterhaus AD, Rimmelzwaan GF (2010) Targets for the induction of protective immunity against influenza a viruses. Viruses 2(1):166–188.  https://doi.org/10.3390/v2010166 CrossRefGoogle Scholar
  14. 14.
    Treanor JJ, Campbell JD, Zangwill KM et al (2006) Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine. N Engl J Med 354(13):1343–1351.  https://doi.org/10.1056/NEJMoa055778 CrossRefGoogle Scholar
  15. 15.
    Nichol KL, Treanor JJ (2006) Vaccines for seasonal and pandemic influenza. J Infect Dis 194(2):111–118.  https://doi.org/10.1086/507544 CrossRefGoogle Scholar
  16. 16.
    Monto AS (2006) Vaccines and antiviral drugs in pandemic preparedness. Emerg Infect Dis 12(1):55.  https://doi.org/10.3201/eid1201.051068 CrossRefGoogle Scholar
  17. 17.
    Langlois I (2005) Viral diseases of ferrets. Vet Clin N Am Exot Anim Pract 8(1):139–160.  https://doi.org/10.1016/j.cvex.2004.09.008 CrossRefGoogle Scholar
  18. 18.
    Belser JA, Katz JM, Tumpey TM (2011) The ferret as a model organism to study influenza A virus infection. Dis Model Mech 4(5):575–579.  https://doi.org/10.1242/dmm.007823 CrossRefGoogle Scholar
  19. 19.
    Palmer D, Dowdle W, Coleman M et al (1975) Advanced laboratory techniques for influenza diagnosis. Immunology series no. 6. Part 2, procedural guide. US Department of Health Education and Public Health Service, Atlanta, pp 25–62Google Scholar
  20. 20.
    Huprikar J, Rabinowitz S (1980) A simplified plaque assay for influenza viruses in Madin–Darby kidney (MDCK) cells. J Virol Methods 1(2):117–120.  https://doi.org/10.1016/0166-0934(80)90020-8 CrossRefGoogle Scholar
  21. 21.
    Asanzhanova NN, Ryskeldinova SZ, Chervyakova OV et al (2017) Comparison of different methods of purification and concentration in production of influenza vaccine. Bull Exp Biol Med 164(2):229–232.  https://doi.org/10.1007/s10517-017-3964-y CrossRefGoogle Scholar
  22. 22.
    Ferko B, Stasakova J, Romanova J et al (2004) Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes. J Virol 78(23):13037–13045.  https://doi.org/10.1128/JVI.78.23.13037-13045.2004 CrossRefGoogle Scholar
  23. 23.
    Lin J, Zhang J, Dong X et al (2006) Safety and immunogenicity of an inactivated adjuvanted whole-virion influenza A (H5N1) vaccine: a phase I randomised controlled trial. Lancet 368(9540):991–997.  https://doi.org/10.1016/S0140-6736(06)69294-5 CrossRefGoogle Scholar
  24. 24.
    Luke CJ, Subbaro K (2006) Vaccines for pandemic influenza. Emerg Infect Dis 12(1):66–72.  https://doi.org/10.3201/eid1201.051147 CrossRefGoogle Scholar
  25. 25.
    Palese P (2006) Making better influenza virus vaccines? Emerg Infect Dis 12(1):61–65.  https://doi.org/10.3201/eid1201.051043 CrossRefGoogle Scholar
  26. 26.
    Horimoto T, Takada A, Fujii K et al (2006) The development and characterization of H5 influenza virus vaccines derived from a 2003 human isolate. Vaccine 24(17):3669–3676.  https://doi.org/10.1016/j.vaccine.2005.07.005 CrossRefGoogle Scholar
  27. 27.
    De Jonge J, Isakova-Sivak I, Van Dijken H et al (2016) H7N9 live attenuated influenza vaccine is highly immunogenic, prevents virus replication, and protects against severe bronchopneumonia in ferrets. Mol Ther 24(5):991–1002.  https://doi.org/10.1038/mt.2016.23 CrossRefGoogle Scholar
  28. 28.
    Baz M, Boonnak K, Paskel M et al (2015) Nonreplicating influenza A virus vaccines confer broad protection against lethal challenge. MBio 6(5):01487-15.  https://doi.org/10.1128/mBio.01487-15 CrossRefGoogle Scholar
  29. 29.
    Music N, Reber AJ, Kim MC et al (2016) Supplementation of H1N1pdm09 split vaccine with heterologous tandem repeat M2e5x virus-like particles confers improved cross-protection in ferrets. Vaccine 34(4):466–473.  https://doi.org/10.1016/j.vaccine.2015.12.023 CrossRefGoogle Scholar
  30. 30.
    Baker SF, Guo H, Albrecht RA et al (2013) Protection against lethal influenza with a viral mimic. J Virol 87(15):8591–8605.  https://doi.org/10.1128/JVI.01081-13 CrossRefGoogle Scholar
  31. 31.
    Maher JA, DeStefano J (2004) The ferret: an animal model to study influenza virus. Lab Anim (NY) 33(9):50–53.  https://doi.org/10.1038/laban1004-50 CrossRefGoogle Scholar
  32. 32.
    Bosch BJ, Bodewes R, de Vries RP et al (2010) Recombinant soluble, multimeric HA and NA exhibit distinctive types of protection against pandemic swine-origin 2009 A (H1N1) influenza virus infection in ferrets. J Virol 84(19):10366–10374.  https://doi.org/10.1128/JVI.01035-10 CrossRefGoogle Scholar
  33. 33.
    Lipatov AS, Webby RJ, Govorkova EA et al (2005) Efficacy of H5 influenza vaccines produced by reverse genetics in a lethal mouse model. J Infect Dis 191(8):1216–1220.  https://doi.org/10.1086/428951 CrossRefGoogle Scholar
  34. 34.
    Johansen K, Nicoll A, Ciancio BC et al (2009) Pandemic influenza A (H1N1) 2009 vaccines in the European Union. Euro Surveill 14(41):19361Google Scholar
  35. 35.
    Kassenov MM, Khairullin BM, Kydyrbayev ZhK et al (2010) Influenza monitoring among birds in Kostanaiskaya Oblast, Republic of Kazakhstan. Agric Biol J N Am 1(5):737–739.  https://doi.org/10.5251/abjna.2010.1.5.737.739 CrossRefGoogle Scholar
  36. 36.
    Katz J, Hancock K, Veguilla V et al (2009) Serum cross-reactive antibody response to a novel influenza A (H1N1) virus after vaccination with seasonal influenza vaccine. MMWR Morb Mortal Wkly Rep 58(19):521–524Google Scholar
  37. 37.
    Liu G, Song L, Reiserova L et al (2012) Flagellin-HA vaccines protect ferrets and mice against H5N1 highly pathogenic avian influenza virus (HPAIV) infections. Vaccine 30(48):6833–6838.  https://doi.org/10.1016/j.vaccine.2012.09.013 CrossRefGoogle Scholar
  38. 38.
    Ninomiya A, Imai M, Tashiro M et al (2007) Inactivated influenza H5N1 whole-virus vaccine with aluminum adjuvant induces homologous and heterologous protective immunities against lethal challenge with highly pathogenic H5N1 avian influenza viruses in a mouse model. Vaccine 25(18):3554–3560.  https://doi.org/10.1016/j.vaccine.2007.01.083 CrossRefGoogle Scholar
  39. 39.
    Schultze V, D’Agosto V, Wack A et al (2008) Safety of MF59™ adjuvant. Vaccine 26(26):3209–3222.  https://doi.org/10.1016/j.vaccine.2008.03.093 CrossRefGoogle Scholar
  40. 40.
    Tabynov K, Kydyrbayev Zh, Sansyzbay A et al (2012) Immunogenic and protective properties of the first kazakhstan vaccine against pandemic influenza A (H1N1) pdm09 in ferrets. Virol Sin 27(6):344–351.  https://doi.org/10.1007/s12250-012-3272-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Ainur Nurpeisova
    • 1
    Email author
  • Markhabat Kassenov
    • 1
  • Nurkuisa Rametov
    • 1
  • Kaissar Tabynov
    • 1
  • Gourapura J. Renukaradhya
    • 2
  • Yevgeniy Volgin
    • 1
  • Altynay Sagymbay
    • 1
  • Amanzhol Makbuz
    • 3
  • Abylay Sansyzbay
    • 1
  • Berik Khairullin
    • 1
  1. 1.Research Institute for Biological Safety Problems (RIBSP)Zhambyl RegionRepublic of Kazakhstan
  2. 2.Department of Veterinary Preventive Medicine, Food Animal Health Research Program, Ohio Agricultural Research and Development CenterThe Ohio State University (OSU)WoosterUSA
  3. 3.Kazakh National Agrarian UniversityAlmatyRepublic of Kazakhstan

Personalised recommendations