Advertisement

Archives of Virology

, Volume 164, Issue 2, pp 573–578 | Cite as

PARV4 found in wild chimpanzee faeces: an alternate route of transmission?

  • Kristýna Brožová
  • David Modrý
  • Eva Dadáková
  • Mwanahamisi I. Mapua
  • Alex K. Piel
  • Fiona A. Stewart
  • Vladimír Celer
  • Kristýna HrazdilováEmail author
Brief Report

Abstract

Human parvovirus 4 (PARV4, family Parvoviridae, genus Tetraparvovirus) displays puzzling features, such as uncertain clinical importance/significance, unclear routes of transmission, and discontinuous geographical distribution. The origin, or the general reservoir, of human PARV4 infection is unknown. We aimed to detect and characterize PARV4 virus in faecal samples collected from two wild chimpanzee populations and 19 species of captive non-human primates. We aimed to investigate these species as a potential reservoir and alternate route of transmission on the African continent. From almost 500 samples screened, a single wild Pan troglodytes schweinfurthii sample tested positive. Full genome analysis, as well as single ORF phylogenies, confirmed species-specific PARV4 infection.

Notes

Acknowledgements

We thank the Tanzanian Wildlife Research Institute (TAWIRI) and Tanzanian Commission for Science and Technology (COSTECH) for permission to conduct research in Tanzania. This research was carried out under the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Program of Sustainability II, by project LO1218 with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the NPU I program, and further co-financed from the European Social Fund and the state budget of the Czech Republic (project OPVK CZ.1.07/2.3.00/20.0300). We acknowledge a grant for the development of research organization (RVO: RO0516). Support for GMERC (formerly UPP) and ongoing work at Issa comes from the UCSD/Salk Center for Academic Research and Training in Anthropogeny (CARTA).

Funding

All grants funding this study are listed in the Acknowledgments section.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

705_2018_4073_MOESM1_ESM.docx (244 kb)
Supplementary material 1 (DOCX 243 kb)

References

  1. 1.
    Manning A, Willey SJ, Bell JE, Simmonds P (2007) Comparison of tissue distribution, persistence, and molecular epidemiology of parvovirus B19 and novel human parvoviruses PARV4 and human bocavirus. J Infect Dis 195:1345–1352.  https://doi.org/10.1086/513280 CrossRefGoogle Scholar
  2. 2.
    Matthews PC, Sharp C, Simmonds P, Klenerman P (2017) Human parvovirus 4 ‘PARV4’ remains elusive despite a decade of study. F1000Research 6:82.  https://doi.org/10.12688/f1000research.9828.1 CrossRefGoogle Scholar
  3. 3.
    Asiyabi S, Nejati A, Shoja Z et al (2016) First report of human parvovirus 4 detection in Iran. J Med Virol 88:1314–1318.  https://doi.org/10.1002/jmv.24485 CrossRefGoogle Scholar
  4. 4.
    Fryer JF, Delwart E, Hecht FM et al (2007) Frequent detection of the parvoviruses, PARV4 and PARV5, in plasma from blood donors and symptomatic individuals. Transfusion 47:1054–1061.  https://doi.org/10.1111/j.1537-2995.2007.01235.x CrossRefGoogle Scholar
  5. 5.
    Matthews PC, Malik A, Simmons R et al (2014) PARV4: an emerging tetraparvovirus. PLoS Pathog 10:e1004036.  https://doi.org/10.1371/journal.ppat.1004036 CrossRefGoogle Scholar
  6. 6.
    Prakash S, Jain A, Seth A et al (2015) Complete genome sequences of two isolates of human parvovirus 4 from patients with acute encephalitis syndrome. Genome Announc 3:e01472-14.  https://doi.org/10.1128/genomeA.01472-14 CrossRefGoogle Scholar
  7. 7.
    Rosenfeldt V, Norja P, Lindberg E et al (2015) Low prevalence of parvovirus 4 in HIV-infected children in Denmark. Pediatr Infect Dis J 34:761–762.  https://doi.org/10.1097/INF.0000000000000642 CrossRefGoogle Scholar
  8. 8.
    Servant-Delmas A, Laperche S, Lionnet F et al (2014) Human parvovirus 4 infection in low- and high-risk French individuals. Transfusion 54:744–745.  https://doi.org/10.1111/trf.12512 CrossRefGoogle Scholar
  9. 9.
    Sharp CP, Lail A, Donfield S et al (2010) High frequencies of exposure to the novel human parvovirus, PARV4 in haemophiliacs and injecting drug users detected by a serological assay for PARV4 antibodies. J Infect Dis 200:1119–1125.  https://doi.org/10.1086/605646.High CrossRefGoogle Scholar
  10. 10.
    Yu X, Zhang J, Hong L et al (2012) High prevalence of human parvovirus 4 infection in HBV and HCV infected individuals in Shanghai. PLoS One 7:e29474.  https://doi.org/10.1371/journal.pone.0029474 CrossRefGoogle Scholar
  11. 11.
    Simmons R, Sharp C, McClure CP et al (2012) Parvovirus 4 infection and clinical outcome in high-risk populations. J Infect Dis 205:1816–1820.  https://doi.org/10.1093/infdis/jis291 CrossRefGoogle Scholar
  12. 12.
    Chen MY, Hung C-C, Lee K-L (2015) Detection of human parvovirus 4 viremia in the follow-up blood samples from seropositive individuals suggests the existence of persistent viral replication or reactivation of latent viral infection. Virol J 12:94.  https://doi.org/10.1186/s12985-015-0326-0 CrossRefGoogle Scholar
  13. 13.
    Drexler JF, Reber U, Muth D et al (2012) Human parvovirus 4 in nasal and fecal specimens from children, Ghana. Emerg Infect Dis 18:1650–1653.  https://doi.org/10.3201/eid1810.111373 CrossRefGoogle Scholar
  14. 14.
    Sharp CP, Gregory WF, Hattingh L et al (2017) PARV4 prevalence, phylogeny, immunology and coinfection with HIV, HBV and HCV in a multicentre African cohort. Wellcome Open Res 2:26.  https://doi.org/10.12688/wellcomeopenres.11135.1 CrossRefGoogle Scholar
  15. 15.
    Sharp CP, Vermeulen M, Nébié Y et al (2010) Changing epidemiology of human parvovirus 4 infection in sub-Saharan Africa. Emerg Infect Dis 16:1605–1607.  https://doi.org/10.3201/eid1610.101001 CrossRefGoogle Scholar
  16. 16.
    Lavoie M, Sharp CP, Pépin J et al (2012) Human parvovirus 4 infection, Cameroon. Emerg Infect Dis 18:680–683.  https://doi.org/10.3201/eid1804.110628 CrossRefGoogle Scholar
  17. 17.
    Sharp CP, LeBreton M, Kantola K et al (2010) Widespread infection with homologues of human parvoviruses B19, PARV4, and human bocavirus of chimpanzees and gorillas in the wild. J Virol 84:10289–10296.  https://doi.org/10.1128/JVI.01304-10 CrossRefGoogle Scholar
  18. 18.
    Adlhoch C, Kaiser M, Loewa A et al (2012) Diversity of chimpanzees, and prey relationships. Emerg Infect Dis 18:859–862.  https://doi.org/10.3201/eid1805.111849 CrossRefGoogle Scholar
  19. 19.
    Rudicell RS, Piel AK, Stewart F et al (2011) High prevalence of simian immunodeficiency virus infection in a community of savanna chimpanzees. J Virol 85:9918–9928.  https://doi.org/10.1128/JVI.05475-11 CrossRefGoogle Scholar
  20. 20.
    Dadáková E, Brožová K, Piel AK et al (2018) Adenovirus infection in savanna chimpanzees (Pan troglodytes schweinfurthii) in the Issa Valley, Tanzania. Arch Virol 163:191–196.  https://doi.org/10.1007/s00705-017-3576-x CrossRefGoogle Scholar
  21. 21.
    Hernandez-Aguilar RA (2009) Chimpanzee nest distribution and site reuse in a dry habitat: implications for early hominin ranging. J Hum Evol 57:350–364.  https://doi.org/10.1016/j.jhevol.2009.03.007 CrossRefGoogle Scholar
  22. 22.
    Mapua MI, Petrželková KJ, Burgunder J et al (2016) A comparative molecular survey of malaria prevalence among Eastern chimpanzee populations in Issa Valley (Tanzania) and Kalinzu (Uganda). Malar J 15:423.  https://doi.org/10.1186/s12936-016-1476-2 CrossRefGoogle Scholar
  23. 23.
    Howard P (1991) Nature conservation in Uganda’s tropical forest reserves. IUCN, GlandGoogle Scholar
  24. 24.
    Hrazdilová K, Slaninková E, Brožová K et al (2016) New species of torque teno miniviruses infecting gorillas and chimpanzees. Virology 487:207–214.  https://doi.org/10.1016/j.virol.2015.10.016 CrossRefGoogle Scholar
  25. 25.
    Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649.  https://doi.org/10.1093/bioinformatics/bts199 CrossRefGoogle Scholar
  26. 26.
    Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274.  https://doi.org/10.1093/molbev/msu300 CrossRefGoogle Scholar
  27. 27.
    Kalyaanamoorthy S, Minh BQ, Wong TKF et al (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589.  https://doi.org/10.1038/nmeth.4285 CrossRefGoogle Scholar
  28. 28.
    Minh BQ, Nguyen MA, Von Haeseler A et al (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195.  https://doi.org/10.1093/molbev/mst024 CrossRefGoogle Scholar
  29. 29.
    Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704.  https://doi.org/10.1080/10635150390235520 CrossRefGoogle Scholar
  30. 30.
    Simmonds P, Douglas J, Bestetti G et al (2008) A third genotype of the human parvovirus PARV4 in sub-Saharan Africa. J Gen Virol 89:2299–2302.  https://doi.org/10.1099/vir.0.2008/001180-0 CrossRefGoogle Scholar
  31. 31.
    Longhi E, Bestetti G, Acquaviva V et al (2007) Human parvovirus 4 in the bone marrow of Italian patients with AIDS. AIDS 21:1481–1483.  https://doi.org/10.1097/QAD.0b013e3281e38558 CrossRefGoogle Scholar
  32. 32.
    Panning M, Kobbe R, Vollbach S et al (2010) Novel human parvovirus 4 genotype 3 in infants, Ghana. Emerg Infect Dis 16:1143–1146.  https://doi.org/10.3201/eid1607.100025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Infectious Diseases and MicrobiologyUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic
  2. 2.Department of Pathological Morphology and ParasitologyUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic
  3. 3.Biology Centre, Institute of ParasitologyCzech Academy of SciencesČeské BudějoviceCzech Republic
  4. 4.CEITEC-VFUUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic
  5. 5.School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
  6. 6.Greater Mahale Ecosystem Research and Conservation Project (GMERC)Dar es SalaamTanzania
  7. 7.Department of VirologyVeterinary Research InstituteBrnoCzech Republic

Personalised recommendations