Advertisement

Vector competence analysis of two Aedes aegypti lineages from Bello, Colombia, reveals that they are affected similarly by dengue-2 virus infection

  • Laura Silvana Pérez-Restrepo
  • Omar Triana-Chávez
  • Ana María Mejía-Jaramillo
  • Sair Orieta Arboleda-Sánchez
Original Article

Abstract

Dengue is the second most prevalent vector-borne disease after malaria in Colombia. It is caused by dengue virus, an arbovirus that exhibits high epidemic power, which is evidenced by its occurrence in more than 80% of the country, largely because of the extensive dispersion of the mosquito vector Aedes aegypti. The existence of two lineages of Ae. aegypti has been proposed based on genetic differences at the mitochondrial level, and they have been reported to circulate in similar proportions in the municipality of Bello (Colombia). It has been suggested that the differentiation of these lineages could influence features such as vector competence (VC) and life table. With the aim of testing this hypothesis, female mosquitoes from both lineages collected from Bello were orally challenged with dengue virus serotype 2 (strain D2-HAN) to measure infection, dissemination, survival and fecundity. Analysis of VC showed an increase in viral titer over time; however, no significant differences were observed between the lineages. The survival rate was not different between the infected lineages, but comparing lineages, it was lower in infected mosquitoes, which may affect the intensity of transmission. Finally, we conclude that the genetic differentiation of Ae. aegypti into lineages did not confer differences in epidemiological status when the mosquitoes were infected with this D2 serotype strain.

Notes

Acknowledgements

We thank A. Trujillo-Correa at Grupo PECET-UdeA for methodological guidelines, Jeiczon Jaimes-Dueñez at Grupo BCEI for guidelines in population genetics analysis, and FJ Díaz at Grupo Inmunovirología-UdeA for virus stock.

Compliance with ethical standards

Funding

This study was funded by Departamento Administrativo de Ciencia, Tecnología e Innovación-COLCIENCIAS, Colombia (grant number 111572553478) and project Sostenibilidad UdeA 2016.

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. For animals, all applicable international, national, and institutional guidelines for the care and use of animals were followed. The use of animals was approved by CEEA (Comité de Ética para la Experimentación con Animales) of UdeA.

Supplementary material

705_2018_4049_MOESM1_ESM.docx (282 kb)
Supplementary material 1 (DOCX 281 kb)

References

  1. 1.
    Guzman MG, Harris E (2015) Dengue. Lancet 385:453–465CrossRefGoogle Scholar
  2. 2.
    Instituto Nacional de Salud (2014) Ministerio de Salud y Proteccion Social: Protocolo de vigilancia en Salud PúblicaGoogle Scholar
  3. 3.
    Moore M, Sylla M, Goss L et al (2013) Dual African origins of global Aedes aegypti s.l. populations revealed by mitochondrial DNA. PLoS Negl Trop Dis 7:e2175CrossRefGoogle Scholar
  4. 4.
    Huber K, Loan LL, Hoang TH et al (2002) Temporal genetic variation in Aedes aegypti populations in Ho Chi Minh City (Vietnam). Heredity (Edinb) 89:7–14CrossRefGoogle Scholar
  5. 5.
    Lourenço-de-Oliveira R, Vazeille M, de Filippis AM (2004) Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses. Trans R Soc Trop Med Hyg 98:43–54CrossRefGoogle Scholar
  6. 6.
    Tabachnick WJ, Wallis GP, Aitken TH (1985) Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations. Am J Trop Med Hyg 34:1219–1224CrossRefGoogle Scholar
  7. 7.
    Beerntsen BT, James AA, Christensen BM (2000) Genetics of mosquito vector competence. Microbiol Mol Biol Rev 64:115–137CrossRefGoogle Scholar
  8. 8.
    Maciel-de-Freitas R, Codeço CT, Lourenço-de-Oliveira R (2007) Daily survival rates and dispersal of Aedes aegypti females in Rio de Janeiro, Brazil. Am J Trop Med Hyg 76:659–665CrossRefGoogle Scholar
  9. 9.
    Moura AJF, Santos MA, Oliveira CM et al (2015) Vector competence of the Aedes aegypti population from Santiago Island, Cape Verde, to different serotypes of dengue virus. Parasites Vectors 8:114CrossRefGoogle Scholar
  10. 10.
    Bennett KE, Olson KE, Muñoz ML et al (2002) Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67:85–92CrossRefGoogle Scholar
  11. 11.
    Vazeille-Falcoz M, Mousson L, Rodhain F et al (1999) Variation in oral susceptibility to dengue type 2 virus of populations of Aedes aegypti from the islands of Tahiti and Moorea, French Polynesia. Am J Trop Med Hyg 60:292–299CrossRefGoogle Scholar
  12. 12.
    Mutebi JP, Barrett AD (2002) The epidemiology of yellow fever in Africa. Microbes Infect 4:1459–1468CrossRefGoogle Scholar
  13. 13.
    Lambrechts L, Scott TW (2009) Mode of transmission and the evolution of arbovirus virulence in mosquito vectors. Proc R Soc B 276:1369–1378CrossRefGoogle Scholar
  14. 14.
    Jaimes-Dueñez J, Arboleda S, Triana-Chávez O, Gómez-Palacio A (2015) Spatio-temporal distribution of Aedes aegypti (Diptera : Culicidae) mitochondrial lineages in cities with distinct Dengue incidence rates suggests complex population dynamics of the Dengue vector in Colombia. PLoS Negl Trop Dis 9:1–21CrossRefGoogle Scholar
  15. 15.
    Peña-García VH, Triana-Chávez O, Mejia-Jaramillo AM et al (2016) Infection rates by dengue virus in mosquitoes and the influence of temperature may be related to different endemicity patterns in three Colombian cities. Int J Environ Res Public Health 13:1–16CrossRefGoogle Scholar
  16. 16.
  17. 17.
    González CR, Jercic MI, Reyes C et al (2008) A pictorial key to the genera of Culicidae (Diptera) from Chile of medical importance. Acta Entomol Chil 32:35–42Google Scholar
  18. 18.
    Black WC, Bernhardt SA (2009) Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome. Insect Mol Biol 18:705–713CrossRefGoogle Scholar
  19. 19.
    Porter CH, Collins FH (1996) Phylogeny of nearctic members of the Anopheles maculipennis species group derived from the D2 variable region of 28S ribosomal RNA. Mol Phylogenet Evol 6:178–188CrossRefGoogle Scholar
  20. 20.
    Costa-da-silva AL, Capurro ML, Bracco JE (2005) Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera : Culicidae) from Peru. Mem Inst Oswaldo Cruz 100:539–544CrossRefGoogle Scholar
  21. 21.
    Paupy C, Le Goff G, Brengues C et al (2012) Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia. Infect Genet Evol 12:1260–1269CrossRefGoogle Scholar
  22. 22.
    Thompson JD, Gilson TJ, Plewniak F et al (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  23. 23.
    Halls TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  24. 24.
    Tamura K, Peterson D, Peterson N (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  25. 25.
    Rambaut A. (2006–2014) FigTree Tree Figure Drawing Tool, Version 1.4.2. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 4 Oct 2018
  26. 26.
    Steinly B, Novak RJ, Webb DW (1991) A new method for monitoring mosquito oviposition in artificial and natural containers. J Am Mosq Control Assoc 7:649–650PubMedGoogle Scholar
  27. 27.
    Chepkorir E, Lutomiah J, Mutisya J et al (2014) Vector competence of Aedes aegypti populations from Kilifi and Nairobi for dengue 2 virus and the influence of temperature. Parasites Vectors 7:435–443CrossRefGoogle Scholar
  28. 28.
    Hanley KA, Nelson JT, Schirtzinger EE et al (2008) Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus. BMC Ecol 8:1CrossRefGoogle Scholar
  29. 29.
    Camacho DE, Guzmán MG, Morier L et al (1999) Estudio de algunas propiedades biológicas de 3 cepas de dengue 2 con diferencias en sus secuencias nucleotídicas. Rev Cuba Med Trop 51:177–180Google Scholar
  30. 30.
    Instituto de Medicina Tropical Pedro Kourí (2013) Técnicas de laboratorio para el diagnóstico y la caracterización de los virus del dengue. Laboratorio de Arbovirus, Departamento de Virología La Habana, Cuba. Rev Inst Med Trop, pp 1–133Google Scholar
  31. 31.
    Galun R (1967) Feeding stimuli and artificial feeding. Bull World Health Organ 36:590–593PubMedPubMedCentralGoogle Scholar
  32. 32.
    Cosgrove JB, Wood RJ, Petrić D et al (1994) A convenient mosquito membrane feeding system. J Am Mosq Control Assoc 10:434–436PubMedGoogle Scholar
  33. 33.
    Hagen H, Grunewald J (1990) Routine Blood-feding of Aedes aegypti via a new membrane. Oper Sci Notes 6:535–536Google Scholar
  34. 34.
    Foggie T, Achee N (2009) Standard operating procedures: rearing Aedes aegypti for the HITSS and Box Laboratory Assays Training Manual v1.0, pp 1–18Google Scholar
  35. 35.
    Lutomiah JL, Koka H, Mutisya J, Yalwala S et al (2011) Ability of selected Kenyan mosquito (Diptera: Culicidae) species to transmit West Nile virus under laboratory conditions. J Med Entomol 48:1197–1201CrossRefGoogle Scholar
  36. 36.
    Turell M, Rossignol P, Rossi C, Bailey C (1984) Enhanced arboviral transmission by mosquitoes that concurrently ingested microfilariae. Science 80:225Google Scholar
  37. 37.
    Bland JM, Douglas GA (2004) The logrank test. Br Med J 328:10–12CrossRefGoogle Scholar
  38. 38.
    GraphPad Prism 6.01 Software (2012). https://www.graphpad.com/www/data-analysis-resource-center/. Accessed 4 Oct 2018
  39. 39.
    Smith DR, Adams PA, Kenney JL et al (2008) Venezuelan equine encephalitis virus in the mosquito vector Aedes taeniorhynchus: infection initiated by a small number of susceptible epithelial cells and a population bottleneck. Virology 372:176–186CrossRefGoogle Scholar
  40. 40.
    Lima RS, Scarpassa VM (2009) Evidence of two lineages of the dengue vector Aedes aegypti in the Brazilian Amazon, based on mitochondrial DNA ND4 gene sequences. Genet Mol Biol 32:414–422CrossRefGoogle Scholar
  41. 41.
    Bustamante DM, Lord CC (2010) Sources of error in the estimation of mosquito infection rates used to assess risk of arbovirus transmission. Am J Trop Med Hyg 82:1172–1184CrossRefGoogle Scholar
  42. 42.
    Maciel-de-Freitas R, Koella JC, Lourenço-de-Oliveira R (2011) Lower survival rate, longevity and fecundity of Aedes aegypti (Diptera: Culicidae) females orally challenged with dengue virus serotype 2. Trans R Soc Trop Med Hyg 105:452–458CrossRefGoogle Scholar
  43. 43.
    Sylvestre G, Gandini M, Maciel-de-Freitas R (2013) Age-dependent effects of oral infection with dengue virus on Aedes aegypti (Diptera: Culicidae) feeding behavior, survival, oviposition success and fecundity. PLoS One 8:1–8CrossRefGoogle Scholar
  44. 44.
    Schmidt WP, Suzuki M, Dinh Thiem V (2011) Population density, water supply, and the risk of dengue Fever in Vietnam: cohort study and spatial analysis. PLoS Med 8:e1001082CrossRefGoogle Scholar
  45. 45.
    Sim S, Jupatanakul N, Dimopoulos G (2014) Mosquito immunity against arboviruses. Viruses 6:4479–4504CrossRefGoogle Scholar
  46. 46.
    Díaz F, Ospina M, Higuita E, Osorio J (2007) Molecular characterization of dengue viruses isolated in Medellin, Colombia and surrounding areas. Am J Trop Med Hyg 77:118CrossRefGoogle Scholar
  47. 47.
    Bosio CF, Fulton RE, Salasek ML et al (2000) Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156:687–698PubMedPubMedCentralGoogle Scholar
  48. 48.
    Salazar MI, Richardson JH, Sánchez-Vargas I et al (2007) Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7:9CrossRefGoogle Scholar
  49. 49.
    Carrington LB, Simmons CP (2014) Human to mosquito transmission of dengue viruses. Front Immunol 5(June):1–8Google Scholar
  50. 50.
    Mousson L, Vazeille M, Chawprom S, Prajakwong S, Rodhain F (2002) Genetic structure of Aedes aegypti populations in Chiang Mai (Thailand) and relation with dengue transmission. Science 7:865–872Google Scholar
  51. 51.
    Tien TK, Vazeille-Falcoz M, Mousson L, Hoang TH, Rodhain F, Nguyen LTH, Failloux A (1999) Aedes aegypti in Ho Chi Minh City (Viet Nam): susceptibility to dengue 2 virus and genetic differentiation. Trans R Soc Trop Med Hyg 93:581–586CrossRefGoogle Scholar
  52. 52.
    Armstrong PM, Rico-hesse R (2003) Efficiency of dendue serotype 2 virus strains to Infect and disseminate in Aedes aegypti. Am J Trop Med Hyg 68:539–544CrossRefGoogle Scholar
  53. 53.
    Rosen L, Rosemboom LE, Gubler D, Lien JC, Chaniotis BN (1985) Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses. ASTMH 34:603–615Google Scholar
  54. 54.
    Lambrechts L, Chevillon C, Albright RG, Thaisomboonsuk B, Richardson JH, Jarman RG, Scott TW (2009) Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evol Biol 9:1–11CrossRefGoogle Scholar
  55. 55.
    Aliota MT, Walker E, Yepes A, Velez ID, Christensen BM, Osorio JE (2016) The wMel strain of wolbachia reduces transmission of chikungunya virus in Aedes aegypti. PLoS Negl Trop Dis 2016:13Google Scholar
  56. 56.
    Aliota MT, Peinado SA, Velez ID, Osorio JE (2016) The wMel strain of wolbachia reduces transmission of Zika virus by Aedes aegypti. Sci Rep 6:1–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo Biología y Control de Enfermedades Infecciosas-BCEIUniversidad de Antioquia UdeAMedellínColombia

Personalised recommendations