Archives of Virology

, Volume 163, Issue 12, pp 3415–3419 | Cite as

A metagenomic study of the rumen virome in domestic caprids

  • Samuel Namonyo
  • Maina Wagacha
  • Solomon Maina
  • Lillian Wambua
  • Morris Agaba
Brief Report


This project sought to investigate the domestic caprid rumen virome by developing a robust viral DNA isolation and enrichment protocol (utilizing membrane filtration, ultra-centrifugation, overnight PEG treatment and nuclease treatment) and using RSD-PCR and high throughput sequencing (HTS) techniques. 3.53% of the reads obtained were analogous to those of viruses denoting Siphoviridae, Myoviridae, Podoviridae, Mimiviridae, Microviridae, Poxviridae, Tectiviridae and Marseillevirus. Most of the sequenced reads from the rumen were similar to those of phages, which are critical in maintaining the rumen microbial populations under its carrying capacity. Though identified in the rumen, most of these viruses have been reported in other environments as well. Improvements in the viral DNA enrichment and isolation protocol are required to obtain data that are more representative of the rumen virome. The 102,130 unknown reads (92.31%) for the goat and 36,241 unknown reads (93.86%) for the sheep obtained may represent novel genomes that need further study.



We thank BecA-ILRI Hub, its staff and that of the University of Nairobi for their support.

Compliance with ethical standards


Funding was provided by the Africa Biosciences Challenge Fund which is financed by The Syngenta Foundation for Sustainable Agriculture, The Bill & Melinda Gates Foundation, The Australian Agency for International Development and The Swedish Ministry for Foreign Affairs through the Swedish International Development Cooperation Agency.

Conflict of interest

Samuel Namonyo, Maina Wagacha, Solomon Maina, Lillian Wambua and Morris Agaba declare that they have no conflict of interest.

Ethical approval

All the rules and guidelines in the treatment and handling of the animals used in this study were followed as outlined by the ministry of livestock (Kenya) and the International Livestock Research Institute.


  1. 1.
    Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    White BA, Cann IKO, Kocherginskaya SA, Aminov RI, Thill LA, Mackie RI, Onodera R (1999) Molecular analysis of archaea, bacteria and eucarya communities in the rumen: review. Asian-Aust J Anim Sci 12(1):129–138. CrossRefGoogle Scholar
  3. 3.
    Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(10):R245–R249. CrossRefPubMedGoogle Scholar
  4. 4.
    Klieve AV, Swain RA (1993) Estimation of ruminal bacteriophage numbers by pulsed-field gel-electrophoresis and laser densitometry. Appl Environ Microbiol 59(7):2299–2303PubMedPubMedCentralGoogle Scholar
  5. 5.
    Berg Miller ME, Yeoman CJ, Chia N, Tringe SG, Angly FE, Edwards RA, Flint HJ, Lamed R, Bayer EA, White BA (2012) Phage–bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ Microbiol 14(1):207–227. CrossRefPubMedGoogle Scholar
  6. 6.
    Fernando BR (2012) Metagenomic analysis of microbial communities in the bovine rumen, Ph.D. thesis. Oklahoma State University, StillwaterGoogle Scholar
  7. 7.
    Jiang Y, Pei J, Xin Song X, Shao W (2007) Restriction site-dependent PCR: an efficient technique for fast cloning of new genes of microorganisms. DNA Res 14:283–290. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7(2):e30619. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386. CrossRefGoogle Scholar
  10. 10.
    Huson DH et al (2011) Integrative analysis of environmental sequences using MEGAN 4. Genome Res 21:1552–1560CrossRefGoogle Scholar
  11. 11.
    Chomczynski P, Sacchi N (1992) The single-step method of RNA isolation by acid, Guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Plunge 1(2):581–585. CrossRefGoogle Scholar
  12. 12.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tardieu A, Bonneté F, Finet S, Vivarès D (2002) Understanding salt or PEG induced attractive interactions to crystallize biological macromolecules. Acta Crystallorgr 58:1549–1553. CrossRefGoogle Scholar
  14. 14.
    Racaniello VR, Enquist LW (2008) Principles of virology, vol 1. Molecular biology. ASM Press, Washington, DC. ISBN 1-55581-479-4Google Scholar
  15. 15.
    Rosseel T (2015) Genome sequencing by random priming methods for viral identification, Ph.D. thesis. Ghent University, GhentGoogle Scholar
  16. 16.
    Alan DR, Chapman D, Dixon L, Chantrey L, Alistair C, Darby CA, Hall N (2012) Application of next-generation sequencing technologies in virology. J Gen Virol 93(Pt 9):1853–1868. CrossRefGoogle Scholar
  17. 17.
    Steven RG, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomica analysis of the human distal gut microbiome. Science 312:1355–1359. CrossRefGoogle Scholar
  18. 18.
    Rondon MR, August PR, Bettermann AD, Brady SF et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66(6):2541–2547. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74. CrossRefPubMedGoogle Scholar
  20. 20.
    Rohwer F, Prangishvili D, Lindell D (2009) Roles of viruses in the environment. Environ Microbiol 11(11):2771–2774. CrossRefPubMedGoogle Scholar
  21. 21.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380CrossRefGoogle Scholar
  22. 22.
    Miller RJ, Koren S, Sutton G (2010) Assembly algorithms for next generation sequencing data. Genomics 95(6):315–327. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ross EM, Petrovski S, Moate SP (2013) Hayes BJ (2013) Metagenomics of rumen bacteriophage from thirteen lactating dairy cattle. BMC Microbiol 13:242. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Madera C, Monjardin C, Suarez JE (2004) Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies. Appl Environ Microbiol 70:7365–7371CrossRefGoogle Scholar
  25. 25.
    Kleerebezem M, Boekhorst J, Van Kranenburg R, Molenaar D, Kuipers R et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995CrossRefGoogle Scholar
  26. 26.
    Hayward AC (1993) The host of Xanthomonas. In: Swings JG, Civerolo LE (eds) Xanthomonas. Chapman and Hall, London, pp 51–54Google Scholar
  27. 27.
    Madigan M, Martinko T, John M (eds) (2005) Brock biology of microorganisms, 11th edn. Prentice Hall, New Jersey, pp 545–572Google Scholar
  28. 28.
    Khan N (2009) Acanthamoeba: biology and pathogenesis. Caister Academic Press, Norfolk, p 209Google Scholar
  29. 29.
    Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ et al (2010) The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5(1):e8926. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467CrossRefGoogle Scholar
  31. 31.
    Edwards RA, Rohwer F (2005) Viral metagenomics. Nat Rev Microbiol 3(6):504–510. CrossRefPubMedGoogle Scholar
  32. 32.
    Qin J, Li R, Raes J, Arumagam M, Burdorf KS et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mastepanov M, Sigsgaard C, Dlugokencky E (2008) Large tundra methane burst during onset of freezing. Nat Prod Lett 456:628–631CrossRefGoogle Scholar
  34. 34.
    Eckard RJ, Grainger C, De Klein CAM (2010) Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livest Sci 130(3):47–56. CrossRefGoogle Scholar
  35. 35.
    Moss AR, Jouany J-P, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann Zootech 49(2000):231–253CrossRefGoogle Scholar
  36. 36.
    Martin C, Morgavi DP, Doreau M (2010) Methane mitigation in ruminants: from microbe to the farm scale. Animal 4(3):351–365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Samuel Namonyo
    • 1
    • 2
  • Maina Wagacha
    • 1
  • Solomon Maina
    • 2
  • Lillian Wambua
    • 1
    • 4
  • Morris Agaba
    • 2
    • 3
  1. 1.The University of NairobiNairobiKenya
  2. 2.BecA-ILRI HubNairobiKenya
  3. 3.The Nelson Mandela African Institute of Science and TechnologyArushaTanzania
  4. 4.International Centre for Insect Physiology and EcologyNairobiKenya

Personalised recommendations