Advertisement

Archives of Virology

, Volume 163, Issue 11, pp 3135–3140 | Cite as

Genetic characterization of chikungunya viruses isolated during the 2015-2017 outbreaks in different states of India, based on their E1 and E2 genes

  • Jayashri Patil
  • Ashwini More
  • Poonam Patil
  • Santosh Jadhav
  • Priyanka Newase
  • Megha Agarwal
  • Sarika Amdekar
  • C. G. Raut
  • Deepti Parashar
  • Sarah S. Cherian
Brief Report

Abstract

During 2015-2017, chikungunya virus (CHIKV) showed a resurgence in several parts of India with Karnataka, Maharashtra and New Delhi accounting for a majority of the cases. E2-E1 gene based characterization revealed Indian subcontinent sublineage strains possessing Aedes aegypti mosquito-adaptive mutations E1: K211E and E2:V264A, with the 211 site positively selected. Novel mutational sites E1: K16E/Q, E1: K132Q/T, E1: S355T, E2: C19R and E2:S185Y could be associated with epitopes or virulence determining domains. The study examines the role of host, vector and viral factors and fills gaps in our molecular epidemiology data for these regions which are known to possess a dynamic population.

Notes

Acknowledgements

Authors are thankful to Dr. S.N. Kalashetty, Pune; National Institute of Malaria Research, New Delhi, Nasik Municipal Corporation for referring human clinical samples for the investigation of chikungunya virus etiology. Authors are grateful to Mr. Atul Walimbe for useful input in the Molecular clock studies.

Funding

This study received institutional funding from National Institute of Virology, Pune.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

The research described in the paper does not use any human or animal subjects.

Supplementary material

705_2018_3974_MOESM1_ESM.tif (3.7 mb)
Supplementary material 1 (TIFF 3756 kb) Suppl. Fig. 1. Phylogenetic tree (Indian Ocean Lineage) based on E2-E1 gene region sequences (n=233) constructed by the Bayesian Markov Chain Monte Carlo (MCMC) method. Posterior supports for all nodes are indicated. The mean root age of IOL and the tMRCAs of the Indian ocean and Indian subcontinent sublineage are also shown. Branch color codes are: Red (Indian isolates of this study); Blue (other Indian isolates); Black (global isolates). Groups highlighted in pink possess E1:A226V mutation while the group in blue possesses E2:V264A and E1:K211E
705_2018_3974_MOESM2_ESM.doc (53 kb)
Supplementary material 2 (DOC 53 kb) Supplementary Table 1: Details of the Chikungunya virus isolates used in this study along with their GenBank accession numbers
705_2018_3974_MOESM3_ESM.doc (62 kb)
Supplementary material 3 (DOC 62 kb) Supplementary Table 2: Novel mutations in the CHIKV E2-E1 genes reported in this study
705_2018_3974_MOESM4_ESM.doc (42 kb)
Supplementary material 4 (DOC 41 kb) Supplementary Table 3: Experimentally known epitopes in the CHIKV structural polyprotein available in Immune Epitope Database (IEDB) and Analysis resource
705_2018_3974_MOESM5_ESM.doc (78 kb)
Supplementary material 5 (DOC 78 kb) Supplementary Table 4: List of publicly available Indian sequences used in sequence analysis

References

  1. 1.
    Arankalle VA, Shrivastava S, Cherian S, Gunjikar RS, Walimbe AM et al (2007) Genetic divergence of chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J Gen Virol 88:1967–1976CrossRefPubMedGoogle Scholar
  2. 2.
    Abraham AR, Manakkadana A, Mudaliar P, Joseph I, Sivakumar KC et al (2016) Correlation of phylogenetic clade diversification and in vitro infectivity differences among Cosmopolitan genotype strains of chikungunya virus. Infect Genet Evol 37:174–184CrossRefPubMedGoogle Scholar
  3. 3.
    Sahu A, Das B, Das M, Patra A, Biswal S et al (2013) Genetic characterization of E2 region of chikungunya virus circulating in Odisha, Eastern India from 2010 to 2011. Infect Genet Evol 18:113–124CrossRefPubMedGoogle Scholar
  4. 4.
    Sumathy K, Ella KM (2012) Genetic diversity of chikungunya virus, India 2006–2010: evolutionary dynamics and serotype analyses. J Med Virol 84:462–470CrossRefPubMedGoogle Scholar
  5. 5.
    Powers AM, Brault AC, Tesh RB, Weaver SC (2000) Re-emergence of chikungunya and O’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol 81:471–479CrossRefPubMedGoogle Scholar
  6. 6.
    Kam YW, Lee WW, Simarmata D, Le Grand R, Tolou H et al (2014) Unique epitopes recognized by antibodies induced in chikungunya virus-infected non-human primates: implications for the study of immunopathology and vaccine development. PLoS One 9:e95647CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L et al (2006) Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3:1058–1070CrossRefGoogle Scholar
  8. 8.
    Cherian SS, Walimbe AM, Jadhav SM, Gandhe SS, Hundekar SL et al (2009) Evolutionary rates and timescale comparison of chikungunya viruses inferred from the whole genome/E1 gene with special reference to the 2005–07 outbreak in the Indian subcontinent. Infect Genet Evol 9:16–23CrossRefPubMedGoogle Scholar
  9. 9.
    Naresh Kumar CVM, Johnson AMA, Sai Gopal DVR (2007) Molecular characterization of chikungunya virus from Andhra Pradesh, India and phylogenetic relationship with Central African isolates. Indian J Med Res 126:534–540Google Scholar
  10. 10.
    Ray P, Ratagiri VH, Kabra SK, Lodha R, Sharma S et al (2012) Chikungunya infection in India: results of a prospective hospital based multi-centric study. PLoS One 7:e30025CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    National Vector Borne Disease Control Programme. 2010–2018. Chikungunya situation in India. http://www.nvbdcp.gov.in/chik-cd.html. Accessed 11 May 2018
  12. 12.
    Sudeep AB, Bondre VP, Gurav YK, Gokhale MD, Sapkal GN et al (2014) Isolation of Chandipura virus (Vesiculovirus: Rhabdoviridae) from Sergentomyia species of sandflies from Nagpur, Maharashtra, India. Indian J Med Res 139:769–772PubMedPubMedCentralGoogle Scholar
  13. 13.
    Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  15. 15.
    Kosakovsky Pond SL, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222CrossRefPubMedGoogle Scholar
  16. 16.
    Peters B, Sidney J, Bourne P, Bui HH, Buus S et al (2005) The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol 3:e91CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pratheek BM, Suryawanshi AR, Chattopadhyay S, Chattopadhyay S (2015) In silico analysis of MHC-I restricted epitopes of chikungunya virus 4 proteins: Implication in understanding anti-CHIKV CD8(+) T cell response and advancement of epitope based immunotherapy for CHIKV infection. Infect Genet Evol 31:118–126CrossRefPubMedGoogle Scholar
  18. 18.
    Chen R, Puri V, Fedorova N, Lin D et al (2016) Comprehensive genome scale phylogenetic study provides new insights on the global expansion of chikungunya virus. J Virol 90:10600–10611CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H et al (2007) Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One 14:e1168CrossRefGoogle Scholar
  20. 20.
    Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3:e201CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Agarwal A, Sharma AK, Sukumaran D, Parida M, Dash PK (2016) Two novel epistatic mutations (E1:K211E and E2:V264A) in structural proteins of chikungunya virus enhance fitness in Aedes aegypti. Virology 497:59–68CrossRefPubMedGoogle Scholar
  22. 22.
    Tsetsarkin KA, Chen R, Yun R, Rossi SL, Plante KS et al (2014) Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun 5:4084CrossRefPubMedGoogle Scholar
  23. 23.
    Arias-Goeta C, Mousson L, Rougeon F, Failloux AB (2013) Dissemination and transmission of the E1–226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level. PLoS One 8:e57548CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shrinet J, Jain S, Sharma A, Singh SS, Mathur K et al (2012) Genetic characterization of chikungunya virus from New Delhi reveal emergence of a new molecular signature in Indian isolates. Virol J 9:100CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Taraphdar D, Chatterjee S (2015) Molecular characterization of chikungunya virus circulating in urban and rural areas of West Bengal, India after its re-emergence in 2006. Trans R Soc Trop Med Hyg 109:197–202CrossRefPubMedGoogle Scholar
  26. 26.
    Strauss EG, Stec DS, Schmaljohn AL, Strauss JH (1991) Identification of antigenically important domains in the glycoproteins of Sindbis virus by analysis of antibody escape variants. J Virol 65:4654–4664PubMedPubMedCentralGoogle Scholar
  27. 27.
    Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C et al (2010) Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography. Nature 468:709–714CrossRefPubMedGoogle Scholar
  28. 28.
    Meyer WJ, Gidwitz S, Ayers VK, Schoepp RJ, Johnston RE (1992) Conformational alteration of Sindbis virion glycoproteins induced by heat, reducing agents, or low pH. J Virol 66:3504–3513PubMedPubMedCentralGoogle Scholar
  29. 29.
    Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG (2010) Structural changes of envelope proteins during alphavirus fusion. Nature 468:705–708CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Jayashri Patil
    • 1
  • Ashwini More
    • 1
  • Poonam Patil
    • 1
  • Santosh Jadhav
    • 2
  • Priyanka Newase
    • 1
  • Megha Agarwal
    • 2
  • Sarika Amdekar
    • 1
  • C. G. Raut
    • 1
  • Deepti Parashar
    • 1
  • Sarah S. Cherian
    • 2
  1. 1.Dengue-Chikungunya GroupNational Institute of VirologyPuneIndia
  2. 2.Bioinformatics GroupNational Institute of VirologyPuneIndia

Personalised recommendations