Archives of Virology

, Volume 163, Issue 11, pp 3035–3049 | Cite as

Evolution and dynamics of the pandemic H1N1 influenza hemagglutinin protein from 2009 to 2017

  • Hebah A. Al Khatib
  • Asmaa A. Al Thani
  • Hadi M. YassineEmail author
Original Article


The emergence of swine-origin pandemic H1N1 (pH1N1) in 2009 invigorated extensive surveillance programs worldwide which have resulted in the deposition of large numbers of H1N1 sequences to Genbank. In the present study, we report on global evolution and dynamics of the pandemic H1N1 influenza Hemagglutinin (HA) protein in viruses isolated from three different continents (North America, Europe and Asia) during the period between April 2009 until April 2017. Close to 2000 HA full protein sequences were downloaded from the Influenza Research Database of the NCBI and analyzed using DNAStar to run an alignment, the web-based NetNglyc to predict N-Glycosylation sites and finally, the BEAST software package to calculate evolution and substitution rates. Our analysis improves upon other published papers in that we report on frequencies, dynamics and impact of HA mutations in pH1N1 viruses isolated from three continents during the past decade, as well as the evolution rate and site-specific selection pressures. Sequence based analysis demonstrated substantial changes in the HA protein over the last decade. Results showed that the HA gene is under negative selection (P value; HA= -2.253). The evolution rates varied among the three continents ranging from 2.36 × 10−3 in Europe to 3.18 × 10−3 in Asia. Mutations were detected at higher frequency and faster rate at the antigenic sites surrounding the receptor-binding domain (RBD), in particular, in the Sa and Sb sites. Mutations were either gradually accumulated to become fixed in currently circulating strains (D114N, S179N, S202T, S220T, I233T, K300E and E391K) or dynamic in terms of appearance and disappearance, both spatially and temporally (A203T, N458K and E508G). Some of the reported mutations have been shown to increase infection severity (D239G/N; globular head), enhance HA binding affinity to its receptor (S200P and S202T; RBD), or have deleterious effect on HA function (N458K and E508G; stem region). The continuous accumulation of mutations at the Sa site led to the gradual acquisition of glycosylation at residue 179 starting from 2015, which became a dominant feature in all strains isolated in the following years. In addition to sharing common amino acid substitutions (e.g. S179N in HA head and E516K in HA stem) with previous seasonal strains, the pattern of glycosylation acquisition/loss at 177 and 179 positions on the globular head, which are prominent features of immune escape, implicate that pH1N1 might follow a similar evolution trend as the SC1918 pandemic virus.


Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Availability of data and material

The datasets analysed during the current study are available in the in Influenza Research Database,

Supplementary material

705_2018_3962_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4363 kb)


  1. 1.
    Rolfes MA, Foppa IM, Garg S, Flannery B, Brammer L, Singleton JA et al (2013) Estimated influenza illnesses, medical visits, hospitalizations, and deaths averted by vaccination in the United States, 9 Dec 2016. Available from: Accessed 15 Mar 2018
  2. 2.
    Johnson NP, Mueller J (2002) Updating the accounts: global mortality of the 1918-1920” Spanish” influenza pandemic. Bull Hist Med 76(1):105–115CrossRefPubMedGoogle Scholar
  3. 3.
    WHO (2010) Pandemic (H1N1) 2009—update 112Google Scholar
  4. 4.
    WHO (2017) 21 August 2017,—Update number 296, based on data up to 06 August 2017. In: WHO report. WHOGoogle Scholar
  5. 5.
    Gamblin SJ, Skehel JJ (2010) Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285(37):28403–28409CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wise HM, Foeglein A, Sun J, Dalton RM, Patel S, Howard W, Anderson EC, Barclay WS, Digard P (2009) A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol 83(16):8021–8031CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Luoh SM, McGregor MW, Hinshaw VS (1992) Hemagglutinin mutations related to antigenic variation in H1 swine influenza viruses. J Virol 66(2):1066–1073PubMedPubMedCentralGoogle Scholar
  8. 8.
    World Health Organization (WHO) (2017) Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Available from: Accessed 11 Feb 2018
  9. 9.
    Sriwilaijaroen N, Suzuki Y (2012) Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proc Jpn Acad Ser B Phys Biol Sci 88(6):226–249CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Igarashi M, Ito K, Yoshida R, Tomabechi D, Kida H, Takada A (2010) Predicting the antigenic structure of the pandemic (H1N1) 2009 influenza virus hemagglutinin. PLoS One 5(1):e8553CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang CC, Chen JR, Tseng YC, Hsu CH, Hung YF, Chen SW, Chen CM, Khoo KH, Cheng TJ, Cheng YS et al (2009) Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci USA 106(43):18137–18142CrossRefPubMedGoogle Scholar
  12. 12.
    Job ER, Deng YM, Barfod KK, Tate MD, Caldwell N, Reddiex S, Maurer-Stroh S, Brooks AG, Reading PC (2013) Addition of glycosylation to influenza A virus hemagglutinin modulates antibody-mediated recognition of H1N1 2009 pandemic viruses. J Immunol (Baltimore, Md : 1950) 190(5):2169–2177CrossRefGoogle Scholar
  13. 13.
    Schulze IT (1997) Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J Infect Dis 176(Suppl 1):S24–S28CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang M, Gaschen B, Blay W, Foley B, Haigwood N, Kuiken C, Korber B (2004) Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology 14(12):1229–1246CrossRefPubMedGoogle Scholar
  15. 15.
    Wei CJ, Boyington JC, Dai K, Houser KV, Pearce MB, Kong WP, Yang ZY, Tumpey TM, Nabel GJ (2010) Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Sci Transl Med 2(24):24ra21CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Influenza Research Database. Accessed 20 Apr 2017
  17. 17.
    Influenza Research Database: Accessed 20 April 2017
  18. 18.
    PROVEAN. Accessed 25 Aug 2017
  19. 19.
    Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7(10):e46688CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    NetNGlyc 1.0 server: Accessed 20 July 2017
  21. 21.
    Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. In: Pacific Symposium on Biocomputing, vol 7. Bio-Centrum Technical University of Denmark, Lyngby, pp 310–322Google Scholar
  22. 22.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pond SL, Frost SC, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics (Oxford, England) 21(5):676–679CrossRefGoogle Scholar
  25. 25.
    Maurer-Stroh S, Lee RT, Eisenhaber F, Cui L, Phuah SP, Lin RT (2010) A new common mutation in the hemagglutinin of the 2009 (H1N1) influenza A virus. PLoS Curr 2:rn1162CrossRefGoogle Scholar
  26. 26.
    Valli MB, Selleri M, Meschi S, Zaccaro P, Vincenti D, Lalle E, Capobianchi MR, Menzo S (2011) Hemagglutinin 222 variants in pandemic (H1N1) 2009 virus. Emerg Infect Dis 17(4):749–751CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tumpey TM, Maines TR, Van Hoeven N, Glaser L, Solorzano A, Pappas C, Cox NJ, Swayne DE, Palese P, Katz JM et al (2007) A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science (New York, NY) 315(5812):655–659CrossRefGoogle Scholar
  28. 28.
    Ilyushina NA, Khalenkov AM, Seiler JP, Forrest HL, Bovin NV, Marjuki H, Barman S, Webster RG, Webby RJ (2010) Adaptation of pandemic H1N1 influenza viruses in mice. J Virol 84(17):8607–8616CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    de Vries RP, de Vries E, Martinez-Romero C, McBride R, van Kuppeveld FJ, Rottier PJ, Garcia-Sastre A, Paulson JC, de Haan CA (2013) Evolution of the hemagglutinin protein of the new pandemic H1N1 influenza virus: maintaining optimal receptor binding by compensatory substitutions. J Virol 87(24):13868–13877CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    World Health Organization-Vaccines (2017) WHO recommendations on the composition of influenza virus vaccines. Available from: Accessed 27 Dec 2017
  31. 31.
    Jayaraman A, Pappas C, Raman R, Belser JA, Viswanathan K, Shriver Z, Tumpey TM, Sasisekharan R (2011) A single base-pair change in 2009 H1N1 hemagglutinin increases human receptor affinity and leads to efficient airborne viral transmission in ferrets. PLoS One 6(3):e17616CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ye J, Sorrell EM, Cai Y, Shao H, Xu K, Pena L, Hickman D, Song H, Angel M, Medina RA et al (2010) Variations in the hemagglutinin of the 2009 H1N1 pandemic virus: potential for strains with altered virulence phenotype? PLoS Pathog 6(10):e1001145CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Barr IG, Cui L, Komadina N, Lee RT, Lin RT, Deng Y, Caldwell N, Shaw R, Maurer-Stroh S (2010) A new pandemic influenza A(H1N1) genetic variant predominated in the winter 2010 influenza season in Australia, New Zealand and Singapore. Eur Surv 15(42):19692. CrossRefGoogle Scholar
  34. 34.
    Yang H, Chang JC, Guo Z, Carney PJ, Shore DA, Donis RO, Cox NJ, Villanueva JM, Klimov AI, Stevens J (2014) Structural stability of influenza A(H1N1)pdm09 virus hemagglutinins. J Virol 88(9):4828–4838CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kim JI, Lee I, Park S, Hwang MW, Bae JY, Lee S, Heo J, Park MS, Garcia-Sastre A, Park MS (2013) Genetic requirement for hemagglutinin glycosylation and its implications for influenza A H1N1 virus evolution. J Virol 87(13):7539–7549CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sun S, Wang Q, Zhao F, Chen W, Li Z (2011) Glycosylation site alteration in the evolution of influenza A (H1N1) viruses. PLoS One 6(7):e22844CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sun S, Wang Q, Zhao F, Chen W, Li Z (2012) Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses. PLoS One 7(2):e32119CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Altman MO, Angel M, Košík I, Gibbs JS, Trovão NS, Zost SJ, Hensley SE, Nelson MI, Yewdell JW (2017) Hemagglutinin glycan clock guides human influenza a virus evolution. bioRxiv. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Hebah A. Al Khatib
    • 1
  • Asmaa A. Al Thani
    • 2
  • Hadi M. Yassine
    • 2
    Email author
  1. 1.Biological and Biomedical Sciences DepartmentHamad Bin Khalifah UniversityDohaQatar
  2. 2.Biomedical Research CenterQatar UniversityDohaQatar

Personalised recommendations