Advertisement

Archives of Virology

, Volume 163, Issue 11, pp 2959–2969 | Cite as

Cor interacts with outer membrane proteins to exclude FhuA-dependent phages

  • Emma S. Arguijo-Hernández
  • Javier Hernandez-Sanchez
  • Saida J. Briones-Peña
  • Norma Oviedo
  • Guillermo Mendoza-Hernández
  • Gabriel Guarneros
  • Luis Kameyama
Original Article

Abstract

Superinfection exclusion (Sie) of FhuA-dependent phages is carried out by Cor in the Escherichia coli mEp167 prophage lysogenic strain. In this work, we present evidence that Cor is an outer membrane (OM) lipoprotein that requires the participation of additional outer membrane proteins (OMPs) to exclude FhuA-dependent phages. Two Cor species of ~13 and ~8.5 kDa, corresponding to the preprolipoprotein/prolipoprotein and lipoprotein, were observed by Western blot. Cell mutants for CorC17F, CorA18D and CorA57E lost the Sie phenotype for FhuA-dependent phages. A copurification affinity binding assay combined with LC_ESI_MS/MS showed that Cor bound to OMPs: OmpA, OmpC, OmpF, OmpW, LamB, and Slp. Interestingly, Sie for FhuA-dependent phages was reduced on Cor overexpressing FhuA+ mutant strains, where ompA, ompC, ompF, ompW, lamB, fhuE, genes were knocked out. The exclusion was restored when these strains were supplemented with plasmids expressing these genes. Sie was not lost in other Cor overexpressing FhuA+ null mutant strains JW3938(btuB-), JW5100(tolB-), JW3474(slp-). These results indicate that Cor interacts and requires some OMPs to exclude FhuA-dependent phages.

Notes

Acknowledgements

We especially thank the National Institute of Genetics (Japan) and Dr. Dimitris Georgellis for providing us BW25113 and the derivative knockout mutant strains (Keio Collection), and their corresponding plasmids (ASKA Collection). We also thank Dr. Thomas Silhavy for providing us Anti-LamB antibody. To Dr. Rosa Ma. Bermúdez Cruz, Dr. Jaime Ortega López, and two unknown reviewers for their critical observations and enriching discussions. To M. Sc. María Guadalupe Aguilar González for her support with nucleic acid sequencing and M. Sc. Marco A. Magos-Castro and M. Sc. Juan Carlos Osorio for their technical assistance. To Gabriela Mora for helping us in the administrative labor. This work was supported by Secretaria de Ciencia, Tecnología e Innovación de la Ciudad de México (SECYTI-CDMX), grant no. PICSA 11-107. E.S.A.H. was granted by CONACyT Mexico fellowship no. 210176.

Compliance with ethical standards

Conflict of interest

Authors: Emma S. Arguijo-Hernández, Javier Hernandez-Sanchez, Saida J. Briones-Peña, Norma Oviedo, Gabriel Guarneros and Luis Kameyama declare that have no conflicts of interest. Author: Guillermo Mendoza-Hernández passed away.

Animals/human participants

This article does not contain any studies with animals or human participants performed by any of the authors.

Supplementary material

705_2018_3954_MOESM1_ESM.pptx (54 kb)
Supplementary material 1 (PPTX 53 kb)

References

  1. 1.
    Heller K, Braun V (1979) Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding. J Bacteriol 139:32–38PubMedPubMedCentralGoogle Scholar
  2. 2.
    Sukupolvi S (1984) Role of lipopolysaccharide in the receptor function for bacteriophage Ox2. FEMS Microbiol Lett 21:83–87CrossRefGoogle Scholar
  3. 3.
    Lenski RE (1984) Two-step resistance by Escherichia coli B to bacteriophage T2. Genetics 107:1–7PubMedPubMedCentralGoogle Scholar
  4. 4.
    Silverman JA, Benson SA (1987) Bacteriophage K20 requires both the OmpF porin and lipopolysaccharide for receptor function. J Bacteriol 169:4830–4833CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Reyes-Cortes R, Martinez-Penafiel E, Martinez-Perez F, de la Garza M, Kameyama L (2012) A novel strategy to isolate cell-envelope mutants resistant to phage infection: bacteriophage mEp213 requires lipopolysaccharides in addition to FhuA to enter Escherichia coli K-12. Microbiology 158:3063–3071CrossRefPubMedGoogle Scholar
  6. 6.
    Hazelbauer GL (1975) Role of the receptor for bacteriophage lambda in the functioning of the maltose chemoreceptor of Escherichia coli. J Bacteriol 124:119–126PubMedPubMedCentralGoogle Scholar
  7. 7.
    Hernandez-Sanchez J, Bautista-Santos A, Fernandez L, Bermudez-Cruz RM, Uc-Mass A, Martinez-Penafiel E, Martinez MA, Garcia-Mena J, Guarneros G, Kameyama L (2008) Analysis of some phenotypic traits of feces-borne temperate lambdoid bacteriophages from different immunity groups: a high incidence of cor+, FhuA-dependent phages. Arch Virol 153:1271–1280CrossRefPubMedGoogle Scholar
  8. 8.
    Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol Microbiol 96:437–447CrossRefPubMedGoogle Scholar
  9. 9.
    Morona R, Tommassen J, Henning U (1985) Demonstration of a bacteriophage receptor site on the Escherichia coli K12 outer-membrane protein OmpC by the use of a protease. Eur J Biochem 150:161–169CrossRefPubMedGoogle Scholar
  10. 10.
    Traurig M, Misra R (1999) Identification of bacteriophage K20 binding regions of OmpF and lipopolysaccharide in Escherichia coli K-12. FEMS Microbiol Lett 181:101–108CrossRefPubMedGoogle Scholar
  11. 11.
    Killmann H, Videnov G, Jung G, Schwarz H, Braun V (1995) Identification of receptor binding sites by competitive peptide mapping: phages T1, T5, and phi 80 and colicin M bind to the gating loop of FhuA. J Bacteriol 177:694–698CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Uc-Mass A, Loeza EJ, de la Garza M, Guarneros G, Hernandez-Sanchez J, Kameyama L (2004) An orthologue of the cor gene is involved in the exclusion of temperate lambdoid phages. Evidence that Cor inactivates FhuA receptor functions. Virology 329:425–433CrossRefPubMedGoogle Scholar
  13. 13.
    Braun V (2009) FhuA (TonA), the career of a protein. J Bacteriol 191:3431–3436CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yu F, Mizushima S (1982) Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol 151:718–722PubMedPubMedCentralGoogle Scholar
  15. 15.
    Goldberg E, Grinius L, Letellier L (1994) Recognition, attachment, and injection. In: Karam JD (ed) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 347–356Google Scholar
  16. 16.
    Rossmann MG, Mesyanzhinov VV, Arisaka F, Leiman PG (2004) The bacteriophage T4 DNA injection machine. Curr Opin Struct Biol 14:171–180CrossRefPubMedGoogle Scholar
  17. 17.
    Molineux IJ (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol Microbiol 40:1–8CrossRefPubMedGoogle Scholar
  18. 18.
    Chang CY, Kemp P, Molineux IJ (2010) Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell. Virology 398:176–186CrossRefPubMedGoogle Scholar
  19. 19.
    Gonzalez-Garcia VA, Pulido-Cid M, Garcia-Doval C, Bocanegra R, van Raaij MJ, Martin-Benito J, Cuervo A, Carrascosa JL (2015) Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor. J Biol Chem 290:10038–10044CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Parent KN, Erb ML, Cardone G, Nguyen K, Gilcrease EB, Porcek NB, Pogliano J, Baker TS, Casjens SR (2014) OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol Microbiol 92:47–60CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Esquinas-Rychen M, Erni B (2001) Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenol-pyruvate: carbohydrate phosphotransferase system (PTS). J Mol Microbiol Biotechnol 3:361–370PubMedGoogle Scholar
  22. 22.
    Samsonov VV, Samsonov VV, Sineoky SP (2002) DcrA and dcrB Escherichia coli genes can control DNA injection by phages specific for BtuB and FhuA receptors. Res Microbiol 153:639–646CrossRefPubMedGoogle Scholar
  23. 23.
    Darlington OF, Levine M (1971) Superinfection exclusion by P22 prophage and the replication complex. J Virol 8:347–348PubMedPubMedCentralGoogle Scholar
  24. 24.
    Donnelly-Wu MK, Jacobs WR Jr, Hatfull GF (1993) Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol Microbiol 7:407–417CrossRefPubMedGoogle Scholar
  25. 25.
    Hofer B, Ruge M, Dreiseikelmann B (1995) The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product. J Bacteriol 177:3080–3086CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ali Y, Koberg S, Heßner S, Sun X, Rabe B, Back A, Neve H, Heller KJ (2014) Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Front Microbiol 5:98CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cumby N, Edwards AM, Davidson AR, Maxwell KL (2012) The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J Bacteriol 194:5012–5019CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kovacs-Simon A, Titball RW, Michell SL (2011) Lipoproteins of bacterial pathogens. Infect Immun 79:548–561CrossRefPubMedGoogle Scholar
  29. 29.
    Konovalova A, Silhavy TJ (2015) Outer membrane lipoprotein biogenesis: Lol is not the end. Philos Trans R Soc Lond B Biol Sci 370(1679):20150030CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Inouye S, Nakazawa A, Nakazawa T (1983) Molecular cloning of regulatory gene xylR and operator-promoter regions of the xylABC and xylDEGF operons of the TOL plasmid. J Bacteriol 155:1192–1199PubMedPubMedCentralGoogle Scholar
  31. 31.
    Tokuda H, Matsuyama S (2004) Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta 1694(1–3):IN1–9PubMedGoogle Scholar
  32. 32.
    Zuckert WR (2014) Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843:1509–1516CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Braun V, Killmann H, Herrmann C (1994) Inactivation of FhuA at the cell surface of Escherichia coli K-12 by a phage T5 lipoprotein at the periplasmic face of the outer membrane. J Bacteriol 176:4710–4717CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Decker K, Krauel V, Meesmann A, Heller KJ (1994) Lytic conversion of Escherichia coli by bacteriophage T5: blocking of the FhuA receptor protein by a lipoprotein expressed early during infection. Mol Microbiol 12:321–332CrossRefPubMedGoogle Scholar
  35. 35.
    Mondigler M, Ayoub AT, Heller KJ (2006) The DNA region of phage BF23 encoding receptor binding protein and receptor blocking lipoprotein lacks homology to the corresponding region of closely related phage T5. J Basic Microbiol 46:116–125CrossRefPubMedGoogle Scholar
  36. 36.
    Susskind MM, Wright A, Botstein D (1971) Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. II. Genetic evidence for two exclusion systems. Virology 45:638–652CrossRefPubMedGoogle Scholar
  37. 37.
    Susskind MM, Botstein D, Wright A (1974) Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. Virology 62:350–366CrossRefPubMedGoogle Scholar
  38. 38.
    Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 36:525–557PubMedPubMedCentralGoogle Scholar
  39. 39.
    Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Appleyard RK (1954) Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics 39:440–452PubMedPubMedCentralGoogle Scholar
  41. 41.
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008PubMedGoogle Scholar
  42. 42.
    Kameyama L, Fernandez L, Calderon J, Ortiz-Rojas A, Patterson TA (1999) Characterization of wild lambdoid bacteriophages: detection of a wide distribution of phage immunity groups and identification of a nus-dependent, nonlambdoid phage group. Virology 263:100–111CrossRefPubMedGoogle Scholar
  43. 43.
    Matsushiro A (1963) Specialized transduction of tryptophan markers in Escherichia coli K12 by bacteriophage ∅80. Virology 19:475–482CrossRefPubMedGoogle Scholar
  44. 44.
    Dhillon TS, Dhillon EK (1976) Temperate coliphage HK022. Clear plaque mutants and preliminary vegetative map. Jpn J Microbiol 20:385–396CrossRefPubMedGoogle Scholar
  45. 45.
    Silhavy TJ, Berman, ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  46. 46.
    Polayes D, Hughes AJ (1994) Efficient protein expression and simple purification using the pPROEX-1 super(TM) system. FOCUS 16:81–84Google Scholar
  47. 47.
    Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning. IRL Press, Oxford, pp 109–135Google Scholar
  48. 48.
    Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113CrossRefPubMedGoogle Scholar
  49. 49.
    Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–944PubMedPubMedCentralGoogle Scholar
  50. 50.
    Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefPubMedGoogle Scholar
  51. 51.
    Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefPubMedGoogle Scholar
  52. 52.
    Ricci DP, Hagan CL, Kahne D, Silhavy TJ (2012) Activation of the Escherichia coli beta-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proc Natl Acad Sci USA 109:3487–3491CrossRefPubMedGoogle Scholar
  53. 53.
    Hayashi S, Wu HC (1990) Lipoproteins in bacteria. J Bioenerg Biomembr 22:451–471CrossRefPubMedGoogle Scholar
  54. 54.
    Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299CrossRefPubMedGoogle Scholar
  55. 55.
    Vostrov AA, Vostrukhina OA, Svarchevsky AN, Rybchin VN (1996) Proteins responsible for lysogenic conversion caused by coliphages N15 and phi80 are highly homologous. J Bacteriol 178:1484–1486CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Price GP, St John AC (2000) Purification and analysis of expression of the stationary phase-inducible slp lipoprotein in Escherichia coli: role of the Mar system. FEMS Microbiol Lett 193:51–56CrossRefPubMedGoogle Scholar
  57. 57.
    Kleanthous C, Rassam P, Baumann CG (2015) Protein–protein interactions and the spatiotemporal dynamics of bacterial outer membrane proteins. Curr Opin Struct Biol 35:109–115CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhang H, Tang X, Munske GR, Zakharova N, Yang L, Zheng C, Wolff MA, Tolic N, Anderson GA, Shi L, Marshall MJ, Fredrickson JK, Bruce JE (2008) In vivo identification of the outer membrane protein OmcA-MtrC interaction network in Shewanella oneidensis MR-1 cells using novel hydrophobic chemical cross-linkers. J Proteome Res 7:1712–1720CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Klebba PE (2016) ROSET model of TonB action in gram-negative bacterial iron acquisition. J Bacteriol 198:1013–1021CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Emma S. Arguijo-Hernández
    • 1
  • Javier Hernandez-Sanchez
    • 1
  • Saida J. Briones-Peña
    • 1
  • Norma Oviedo
    • 2
  • Guillermo Mendoza-Hernández
    • 3
  • Gabriel Guarneros
    • 1
  • Luis Kameyama
    • 1
  1. 1.Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City (CDMX)México
  2. 2.Unidad de Investigación Médica en Inmunología e InfectologíaCentro Médico Nacional la Raza, IMSSMexico City (CDMX)México
  3. 3.Departamento de Bioquímica, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico City (CDMX)México

Personalised recommendations