Advertisement

Archives of Virology

, Volume 163, Issue 10, pp 2883–2888 | Cite as

Genome polarity of RNA viruses reflects the different evolutionary pressures shaping codon usage

  • Supinya Phakaratsakul
  • Thanyaporn Sirihongthong
  • Chompunuch Boonarkart
  • Ornpreya Suptawiwat
  • Prasert Auewarakul
Brief Report
  • 106 Downloads

Abstract

RNA viruses are classified by their genome polarity and replication strategies. Nucleotide composition and codon usage differ among virus groups, for instance positive-sense RNA (+ssRNA) viruses have higher GC-content than the other RNA virus groups. Codon usage of +ssRNA viruses is closer to humans showing significantly higher codon adaptation index (CAI) than those of negative-sense RNA (-ssRNA), double stranded RNA (dsRNA) and retroviruses. Ambisense viruses have high CAI comparable to that of +ssRNA virus despite their lower GC content, whereas dsRNA viruses have the lowest CAI. This may provide a benefit for +ssRNA viruses as their genomes are used as mRNA. However, analyses for influence of nucleotide composition on codon usage did not show a difference between +ssRNA and –ssRNA viruses. This suggests that genome composition and hence mutational pressure remain the major pressure causing the differences in codon usage among RNA viruses with different genome types.

Notes

Acknowledgements

The work was financial supported by Siriraj Graduate Scholarship, Siriraj Graduate Research Scholarship, Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0030/2556) and research grant (Grant No. IRN60W0002) from Thailand Research Fund.

References

  1. 1.
    Wong EH, Smith DK, Rabadan R, Peiris M, Poon LL (2010) Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus. BMC Evol Biol 10:253.  https://doi.org/10.1186/1471-2148-10-253 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907PubMedPubMedCentralGoogle Scholar
  3. 3.
    Sharp PM, Stenico M, Peden JF, Lloyd AT (1993) Codon usage: mutational bias, translational selection, or both? Biochem Soc Trans 21:835–841CrossRefPubMedGoogle Scholar
  4. 4.
    van Hemert FJ, Berkhout B, Lukashov VV (2007) Host-related nucleotide composition and codon usage as driving forces in the recent evolution of the Astroviridae. Virology 361:447–454CrossRefPubMedGoogle Scholar
  5. 5.
    Butt AM, Nasrullah I, Qamar R, Tong Y (2016) Evolution of codon usage in Zika virus genomes is host and vector specific. Emerg Microbes Infect 5:e107.  https://doi.org/10.1038/emi.2016.106 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Phakaratsakul S, Sirihongthong T, Boonarkart C, Suptawiwat O, Auewarakul P (2017) Codon usage of HIV regulatory genes is not determined by nucleotide composition. Arch Virol.  https://doi.org/10.1007/s00705-017-3597-5 PubMedGoogle Scholar
  7. 7.
    Pandit A, Sinha S (2011) Differential trends in the codon usage patterns in HIV-1 genes. PLoS One 6:e28889CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    van der Kuyl AC, Berkhout B (2012) The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus. Retrovirology 9:92.  https://doi.org/10.1186/1742-4690-9-92 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Knoepfel SA, Di Giallonardo F, Däumer M, Thielen A, Metzner KJ (2011) In-depth analysis of G-to-A hypermutation rate in HIV-1 env DNA induced by endogenous APOBEC3 proteins using massively parallel sequencing. J Virol Methods 171:329–338.  https://doi.org/10.1016/j.jviromet.2010.11.016 CrossRefPubMedGoogle Scholar
  10. 10.
    Imahashi M, Nakashima M, Iwatani Y (2012) Antiviral mechanism and biochemical basis of the human APOBEC3 family. Front Microbiol 3:250.  https://doi.org/10.3389/fmicb.2012.00250 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cheng X, Virk N, Chen W, Ji S, Ji S, Sun Y et al (2013) CpG usage in RNA viruses: data and hypotheses. PLoS One 8:e74109.  https://doi.org/10.1371/journal.pone.0074109 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Takata MA, Gonçalves-Carneiro D, Zang TM, Soll SJ, York A, Blanco-Melo D et al (2017) CG dinucleotide suppression enables antiviral defense targeting non-self RNA. Nature 550:124–127.  https://doi.org/10.1038/nature24039 PubMedGoogle Scholar
  13. 13.
    Di Giallonardo F, Schlub TE, Shi M, Holmes EC (2017) Dinucleotide composition in animal RNA viruses is shaped more by virus family than by host species. J Virol 91:e02381-16.  https://doi.org/10.1128/jvi.02381-16 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nguyen M, Haenni AL (2003) Expression strategies of ambisense viruses. Virus Res 93:141–150CrossRefPubMedGoogle Scholar
  15. 15.
    Auewarakul P (2005) Composition bias and genome polarity of RNA viruses. Virus Res 109:33–37CrossRefPubMedGoogle Scholar
  16. 16.
    Puigbò P, Bravo IG, Garcia-Vallve S (2008) CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct 3:38.  https://doi.org/10.1186/1745-6150-3-38 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sharp PM, Li WH (1987) The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases. Nucleic Acids Res 28:292CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87:23–29CrossRefPubMedGoogle Scholar
  20. 20.
    Palidwor GA, Perkins TJ, Xia X (2010) A general model of codon bias due to GC mutational bias. PLoS One 5:e13431CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bouquet J, Cherel P, Pavio N (2012) Genetic characterization and codon usage bias of full-length Hepatitis E virus sequences shed new lights on genotypic distribution, host restriction and genome evolution. Infect Genet Evol 12:1842–1853.  https://doi.org/10.1016/j.meegid.2012.07.021 CrossRefPubMedGoogle Scholar
  22. 22.
    Hu JS, Wang QQ, Zhang J, Chen HT, Xu ZW, Zhu L et al (2011) The characteristic of codon usage pattern and its evolution of hepatitis C virus. Infect Genet Evol 11:2098–2102.  https://doi.org/10.1016/j.meegid.2011.08.025 CrossRefPubMedGoogle Scholar
  23. 23.
    Zhou Y, Chen X, Ushijima H, Frey TK (2012) Analysis of base and codon usage by rubella virus. Arch Virol 157:889–899.  https://doi.org/10.1007/s00705-012-1243-9 CrossRefPubMedGoogle Scholar
  24. 24.
    Sasada A, Takaori-Kondo A, Shirakawa K, Kobayashi M, Abudu A, Hishizawa M et al (2005) APOBEC3G targets human T-cell leukemia virus type 1. Retrovirology 2:32CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Martin JL, Maldonado JO, Mueller JD, Zhang W, Mansky LM (2016) Molecular studies of HTLV-1 replication: an update. Viruses 8:E31.  https://doi.org/10.3390/v8020031 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Supinya Phakaratsakul
    • 1
  • Thanyaporn Sirihongthong
    • 1
  • Chompunuch Boonarkart
    • 1
  • Ornpreya Suptawiwat
    • 2
  • Prasert Auewarakul
    • 1
  1. 1.Department of MicrobiologyFaculty of Medicine Siriraj Hospital, Mahidol UniversityBangkokThailand
  2. 2.Research and International Relations DivisionHRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal AcademyBangkokThailand

Personalised recommendations