Advertisement

Archives of Virology

, Volume 163, Issue 10, pp 2871–2875 | Cite as

Enzyme-linked immunosorbent assay and agar gel immunodiffusion assay for diagnosis of equine infectious anemia employing p26 protein fused to the maltose-binding protein

  • Karin F. L. P. Fontes
  • Luiz C. Silva-Júnior
  • Sérgio A. Nascimento
  • Daniel P. Chaves
  • Jose W. Pinheiro-Júnior
  • Antonio C. Freitas
  • Roberto S. Castro
  • André L. S. Jesus
Brief Report

Abstract

A codon-optimized equine infectious anemia virus p26 gene was fused to a maltose-binding protein (MBP) and expressed in Escherichia coli for use as an antigen in agar gel immunodiffusion (AGID) and enzyme-linked immunosorbent assay (ELISA) for diagnosis of equine infectious anemia. An analysis of analytical sensitivity and specificity showed that the antigen MBP-p26rec reacted positively with a reference World Organization for Animal Health serum and demonstrated no cross-reaction against sera from vaccinated animals in either test. The diagnostic characteristics were evaluated and presented excellent values. The AGIDrec showed 100% sensitivity and specificity, and the ELISArec showed 100% sensitivity and 99.64% specificity. In addition, MBP-p26rec was stabile after three years of storage at 4 °C, maintaining its immunoreactivity.

Notes

Acknowledgements

This work was funded by the Foundation for Science and Technology Support of the State of Pernambuco (FACEPE), the Financier of Studies and Projects (FINEP), and Biovetech (PAPPE - 2008; Proc APS 0338-5.05/08). Scholarships were awarded by the Brazilian agencies CAPES and CNPq. The authors are grateful to Dr. Hans Aymeric from Equine Diseases Laboratory (Maisons-Alfort, France) for kindly providing the OIE anti-EIAV reference serum, and to the Brazilian Ministry of Agriculture, Livestock and Supply for permission to import the serum.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent

All authors have seen and agree with the contents of the manuscript.

References

  1. 1.
    Cook RF, Leroux C, Issel CJ (2013) Equine infectious anemia and equine infectious anemia virus in 2013: a review. Vet Microbiol 167(1–2):181–204CrossRefPubMedGoogle Scholar
  2. 2.
    Issel CJ, Foil LD (2015) Equine infectious anaemia and mechanical transmission: man and the wee beasties. Rev Sci Tech 34(2):513–523CrossRefPubMedGoogle Scholar
  3. 3.
    Leroux C, Cadoré J-L, Montelaro RC (2004) Equine infectious anemia vírus (EIAV): what has HIV’s country cousin got to tell us? Vet Res 25:485–512CrossRefGoogle Scholar
  4. 4.
    Issel CJ, Cook RF, Mealey RH, Horohov DW (2014) Equine infectious anemia in 2014: live with it or eradicate it? Vet Clin N Am Equine Pract 30:561–577CrossRefGoogle Scholar
  5. 5.
    World Organization for Animal Health (OIE) (2017) http://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2017/. Acesso em: 14 Aug 2017
  6. 6.
    Montelaro RC, Parekh B, Orrego A, Issel CJ (1984) Antigenic variation during persistent infection by equine infectious anaemia, a retrovirus. J Biol Chem 16:10539–10544Google Scholar
  7. 7.
    Soutullo A, Verwimp V, Riveros M, Pauli R, Tonarelli G (2001) Design and validation of an ELISA for equine infectious anemia (EIA) diagnosis using synthetic peptides. Vet Microbiol 79:111–121CrossRefPubMedGoogle Scholar
  8. 8.
    Alvarez I, Gutierrez G, Vissani A, Rodriguez S, Barrandeguy M, Trono K (2007) Standardization and validation of an agar gel immunodiffusion test for the diagnosis of equine infectious anemia using a recombinant p26 antigen. Vet Microbiol 121:344–351CrossRefPubMedGoogle Scholar
  9. 9.
    Piza AST, Perira AR, Terreran MT, Mozzer O, Tanuri A, Brandão PE, Richtzenhain LJ (2007) Serodiagnosis of equine infectious anemia by agar gel immunodiffusion and ELISA using a recombinant p26 viral protein expressed in Escherichia coli as antigen. Prev Vet Med 78:239–245CrossRefPubMedGoogle Scholar
  10. 10.
    Kong XK, Pang H, Sugiura T, Sentsui H, Onodera T, Matsumoto Y, Akashi H (1997) Application of equine infectious anaemia virus core proteins produced in a Baculovirus expression system, to serological diagnosis. MicrobiolImmunol 41:975–980Google Scholar
  11. 11.
    Coutinho LCA, Jesus AL, Fontes KFLP, Coimbra EC, Mariz FC, Freitas AC, Maia RCC, Castro RS (2013) Production of equine infectious anemia virus (EIAV) antigen in Pichia pastoris. J Virol Methods 191(2):95–100CrossRefGoogle Scholar
  12. 12.
    Costa S, Almeida A, Castro A, Domingues L (2014) Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8system. Front Microbiol 5:63PubMedPubMedCentralGoogle Scholar
  13. 13.
    Walper SA, Battle SR, Lee PAB, Zabetakis D, Turner KB, Buckley PE, Calm AM, Welsh HS, Warner CR, Zacharko MA, Goldman ER, Anderson GP (2014) Thermostable single domain antibody-maltose binding protein fusion for Bacillus anthracis spore protein BclA detection. Anal Biochem 447:64–73CrossRefPubMedGoogle Scholar
  14. 14.
    Kosobokova EN, Skrypnik KA, Kosorukov VS (2016) Overview of fusion tags for recombinant proteins. Biochemistry (Mosc) 81(3):187–200CrossRefGoogle Scholar
  15. 15.
    O’Farrell PH (1975) High resolution two-dimensional electrophoresis of protein. J Biol Chem 250(10):4007–4021PubMedPubMedCentralGoogle Scholar
  16. 16.
    Sørensen HP, Mortensen KK (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 4(1):1CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Singha H, Goyal SK, Malik P, Khurana SK, Raj K, Singh RK (2013) Development, evaluation, and laboratory validation of immunoassays for the diagnosis of equine infectious anemia (EIA) using recombinant protein produced from a synthetic p26 gene of EIA virus. Indian J Virol 24(3):349–356CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wright PF, Nilsson E, Van Rooij EMA, Lelenta M, Jeggo MH (1993) Standardization and validation of enzyme-linked immunosorbent assay techniques for the detection of antibody in infectious disease diagnosis. Rev Sci Tech Off Int Epiz 12(2):435–450CrossRefGoogle Scholar
  19. 19.
    Metz CE (1978) Basic principles of ROC analysis. SeminNucl Med 8(4):283–298Google Scholar
  20. 20.
    Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577PubMedPubMedCentralGoogle Scholar
  21. 21.
    Youden WJ (1950) An index for rating diagnostic tests. Cancer 3:32–35CrossRefPubMedGoogle Scholar
  22. 22.
    Zhou XH, Obuchowski NA, Mcclish DK (2002) Statistical methods in diagnostic medicine. Wiley-Interscience, Hoboken. ISBN 978-0-470-31792-1CrossRefGoogle Scholar
  23. 23.
    Banoo S, Bell D, Bossuyt P, Herring A, Mabey D, Poole F, Smith PG, Sriram N, Wongsrichanalai C, Linke R, O’brien R, Perkins M, Cunningham J, Matsoso P, Nathanson CM, Olliaro P, Peeling RW, Ramsay A (2010) Evaluation of diagnostic tests for infectious diseases: general principles. The TDR diagnostic evaluation panel. Nat Rev Microbiol 4:S21–S31CrossRefGoogle Scholar
  24. 24.
    Reis JKP, Rejane S, Diniz RS, Haddad JPA, Ferraz IBF, Alex F, Carvalho AF, Kroon EG, Ferreira PCP, Leite RC (2012) Recombinant envelope protein (rgp90) ELISA for equine infectious anemia virus provides comparable results to the agar gel immunodiffusion. J Virol Methods 180:62–67CrossRefPubMedGoogle Scholar
  25. 25.
    Waugh DS (2016) The remarkable solubility-enhancing power of Escherichia coli maltose-binding protein. Postepy Biochem 62:377–382PubMedGoogle Scholar
  26. 26.
    Joseph BC, Pichaimuthu S, Srimeenakshi S, Murthy M, Selvakumar K, Ganesan M, Manjunath SR (2015) An overview of the parameters for recombinant protein expression in Escherichia coli. J Cell Sci Ther 6:221CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Veterinary MedicineFederal Rural University of PernambucoRecifeBrazil
  2. 2.Department of Veterinary MedicineState University of MaranhãoSão LuísBrazil
  3. 3.Department of GeneticsFederal University of PernambucoRecifeBrazil

Personalised recommendations