Advertisement

Archives of Virology

, Volume 163, Issue 9, pp 2575–2577 | Cite as

Genome sequence of the novel virulent bacteriophage PMBT14 with lytic activity against Pseudomonas fluorescens DSM 50090R

  • Sabrina Koberg
  • Stefanie Gieschler
  • Erik Brinks
  • Mareike Wenning
  • Horst Neve
  • Charles M. A. P. Franz
Annotated Sequence Record

Abstract

Psychrotrophic gram-negative Pseudomonas spp. represent a serious problem in the dairy industry as they can cause spoilage of milk and dairy products. Bacteriophages have moved into focus as promising biocontrol agents for such food spoilage bacteria. The virulent Siphoviridae phage PMBT14 was isolated on a mutant variant of P. fluorescens DSM 50090 challenged with an unrelated virulent P. fluorescens DSM 50090 Podoviridae phage (i.e., mutant strain DSM 50090R). PMBT14 has a 47,820-bp dsDNA genome with 76 predicted open reading frames (ORFs). Its genome shows no significant sequence similarity to that of known phages, suggesting that PMBT14 represents a novel phage. Phage PMBT14 could be a promising biocontrol agent for P. fluorescens in milk or dairy foods.

Notes

Acknowledgements

We kindly thank Angela Back and Gesa Gehrke for technical assistance.

Compliance with ethical standards

Conflict of interest

None of the authors has any conflict of interest to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

705_2018_3882_MOESM1_ESM.pdf (120 kb)
Supplementary material 1 (PDF 133 kb)

References

  1. 1.
    Samaržija D, Zamberlin Š, Pogačić T (2012) Psychrotrophic bacteria and milk quality. Mljekarstvo 2:77–95Google Scholar
  2. 2.
    Nollet LML, Toldrá F (2009) Handbook of dairy foods analysis. CRC Press, Boca RatonCrossRefGoogle Scholar
  3. 3.
    von Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B, Stressler T, Fischer L, Hinrichs J, Scherer S, Wenning M (2015) Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol 211:57–65CrossRefGoogle Scholar
  4. 4.
    von Neubeck M, Huptas C, Gluck C, Krewinkel M, Stoeckel M, Stressler T, Fischer L, Hinrichs J, Scherer S, Wenning M (2017) Pseudomonas lactis sp. nov. and Pseudomonas paralactis sp. nov., isolated from bovine raw milk. Int J Syst Evol Microbiol 67:1656–1664CrossRefGoogle Scholar
  5. 5.
    Ternstrom A, Lindberg AM, Molin G (1993) Classification of the spoilage flora of raw and pasteurized bovine milk, with special reference to Pseudomonas and Bacillus. J Appl Bacteriol 75:25–34CrossRefPubMedGoogle Scholar
  6. 6.
    Dogan B, Boor KJ (2003) Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Appl Environ Microbiol 69:130–138CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wiedmann M, Weilmeier D, Dineen SS, Ralyea R, Boor KJ (2000) Molecular and phenotypic characterization of Pseudomonas spp. isolated from milk. Appl Environ Microbiol 66:2085–2095CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Martins ML, de Araujo EF, Mantovani HC, Moraes CA, Vanetti MCD (2005) Detection of the apr gene in proteolytic psychrotrophic bacteria isolated from refrigerated raw milk. Int J Food Microbiol 102:203–211CrossRefPubMedGoogle Scholar
  9. 9.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75CrossRefGoogle Scholar
  11. 11.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  12. 12.
    Borodovsky M, Lomsadze A (2014) Gene identification in prokaryotic genomes, phages, metagenomes, and EST sequences with GeneMarkS suite. Curr Protoc Microbiol 32:4.5.1–4.5.17Google Scholar
  13. 13.
    Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182PubMedGoogle Scholar
  14. 14.
    McNair K, Bailey BA, Edwards RA (2012) PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28:614–618CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology and BiotechnologyMax Rubner-Institut, Federal Research Institute of Nutrition and FoodKielGermany
  2. 2.Lehrstuhl für Mikrobielle Ökologie, ZIEL-Institute for Food and HealthTechnische Universität MünchenFreisingGermany

Personalised recommendations