Advertisement

Archives of Virology

, Volume 163, Issue 9, pp 2465–2469 | Cite as

Evolutionary analyses of Sindbis virus strains isolated from mosquitoes in Kenya

  • Faith SigeiEmail author
  • Fredrick Nindo
  • Silvanos Mukunzi
  • Zipporah Ng’ang’a
  • Rosemary Sang
Brief Report

Abstract

Sindbis virus (SINV) is a mosquito borne virus maintained in nature in a mosquito-bird cycle, with human outbreaks known to occur in Northern Europe and parts of Africa. We analyzed five SINV strains isolated in Kenya from five different mosquito species and geographic locations between 2007 and 2013. Phylogenetic relationships and evolutionary inferences were performed using maximum likelihood and Bayesian phylogenetic inference approaches. Selection analyses were carried out based on the virus envelope glycoproteins (E1, E2) and non-structural protein (nsP4) genes. Phylogenetic analysis revealed that all the Kenyan SINV isolates belonged to genotype 1 with selection analyses suggesting that SINV E1, E2 and nsP4 protein encoding genes were predominantly evolving under negative selection.

Notes

Acknowledgements

The authors wish to acknowledge Caroline Tigoi, Edith Chepkorir, Samuel Arum and the entire KEMRI-VHF Nairobi team for their technical assistance and support during the study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

Ethical clearance to conduct this study was sought and granted by the Kenya Medical Research Institute (KEMRI) Ethics Review Committee (ERC), under protocol approval scientific steering committee (SSC) 2786.

References

  1. 1.
    Lundstrom JO, Pfeffer M (2010) Phylogeographic structure and evolutionary history of Sindbis virus. Vector Borne Zoonotic Dis 10:889–907.  https://doi.org/10.1089/vbz.2009.0069 CrossRefPubMedGoogle Scholar
  2. 2.
    Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562PubMedPubMedCentralGoogle Scholar
  3. 3.
    Adouchief S, Smura T, Sane J, Vapalahti O, Kurkela S (2016) Sindbis virus as a human pathogen-epidemiology, clinical picture and pathogenesis. Rev Med Virol.  https://doi.org/10.1002/rmv.1876 PubMedCrossRefGoogle Scholar
  4. 4.
    Kurkela S, Helve T, Vaheri A, Vapalahti O (2008) Arthritis and arthralgia three years after Sindbis virus infection: clinical follow-up of a cohort of 49 patients. Scand J Infect Dis 40:167–173CrossRefPubMedGoogle Scholar
  5. 5.
    Storm N, Weyer J, Markotter W, Kemp A, Leman PA, Dermaux-Msimang V, Nel LH, Paweska JT (2014) Human cases of Sindbis fever in South Africa, 2006–2010. Epidemiol Infect 142:234–238.  https://doi.org/10.1017/S0950268813000964 CrossRefPubMedGoogle Scholar
  6. 6.
    Brummer-Korvenkontio M, Vapalahti O, Kuusisto P, Saikku P, Manni T, Koskela P, Nygren T, Brummer-Korvenkontio H, Vaheri A (2002) Epidemiology of Sindbis virus infections in Finland 1981–96: possible factors explaining a peculiar disease pattern. Epidemiol Infect 129:335–345CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jupp PG, Blackburn NK, Thompson DL, Meenehan GM (1986) Sindbis and West Nile virus infections in the Witwatersrand-Pretoria region. S Afr Med J 70:218–220PubMedGoogle Scholar
  8. 8.
    Jost H, Bialonski A, Storch V, Gunther S, Becker N, Schmidt-Chanasit J (2010) Isolation and phylogenetic analysis of Sindbis viruses from mosquitoes in Germany. J Clin Microbiol 48:1900–1903.  https://doi.org/10.1128/JCM.00037-10 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hesson JC, Lundstrom JO, Tok A, Ostman O, Lundkvist A (2016) Temporal variation in Sindbis virus antibody prevalence in bird hosts in an endemic area in Sweden. PLoS One 11:e0162005.  https://doi.org/10.1371/journal.pone.0162005 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Francy DB, Jaenson TG, Lundstrom JO, Schildt EB, Espmark A, Henriksson B, Niklasson B (1989) Ecologic studies of mosquitoes and birds as hosts of Ockelbo virus in Sweden and isolation of Inkoo and Batai viruses from mosquitoes. Am J Trop Med Hyg 41:355–363CrossRefPubMedGoogle Scholar
  11. 11.
    Hubalek Z (2004) An annotated checklist of pathogenic microorganisms associated with migratory birds. J Wildl Dis 40:639–659CrossRefPubMedGoogle Scholar
  12. 12.
    Geser A, Henderson BE, Christensen S (1970) A multipurpose serological survey in Kenya. 2. Results of arbovirus serological tests. Bull World Health Organ 43:539–552PubMedPubMedCentralGoogle Scholar
  13. 13.
    Tigoi C, Lwande O, Orindi B, Irura Z, Ongus J, Sang R (2015) Seroepidemiology of selected arboviruses in febrile patients visiting selected health facilities in the lake/river basin areas of Lake Baringo, Lake Naivasha, and Tana River, Kenya. Vector Borne Zoonotic Dis 15:124–132.  https://doi.org/10.1089/vbz.2014.1686 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Crabtree M, Sang R, Lutomiah J, Richardson J, Miller B (2009) Arbovirus surveillance of mosquitoes collected at sites of active Rift Valley fever virus transmission: Kenya, 2006–2007. J Med Entomol 46:961–964CrossRefPubMedGoogle Scholar
  15. 15.
    Ochieng C, Lutomiah J, Makio A, Koka H, Chepkorir E, Yalwala S, Mutisya J, Musila L, Khamadi S, Richardson J et al (2013) Mosquito-borne arbovirus surveillance at selected sites in diverse ecological zones of Kenya; 2007–2012. Virol J 10:140.  https://doi.org/10.1186/1743-422x-10-140 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    O’Guinn ML, Lee JS, Kondig JP, Fernandez R, Carbajal F (2004) Field detection of eastern equine encephalitis virus in the Amazon Basin region of Peru using reverse transcription-polymerase chain reaction adapted for field identification of arthropod-borne pathogens. Am J Trop Med Hyg 70:164–171PubMedCrossRefGoogle Scholar
  17. 17.
    Sane J, Kurkela S, Putkuri N, Huhtamo E, Vaheri A, Vapalahti O (2012) Complete coding sequence and molecular epidemiological analysis of Sindbis virus isolates from mosquitoes and humans, Finland. J Gen Virol 93:1984–1990.  https://doi.org/10.1099/vir.0.042853-0 CrossRefPubMedGoogle Scholar
  18. 18.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772.  https://doi.org/10.1038/nmeth.2109 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214.  https://doi.org/10.1186/1471-2148-7-214 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973.  https://doi.org/10.1093/molbev/mss075 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    FigTree (2012) Tree figure drawing tool, v1.4.0. http://tree.bio.ed.ac.uk/software/figtree/. Accessed Apr 2016
  24. 24.
    Poon AF, Frost SD, Pond SL (2009) Detecting signatures of selection from DNA sequences using Datamonkey. Methods Mol Biol 537:163–183.  https://doi.org/10.1007/978-1-59745-251-9_8 CrossRefPubMedGoogle Scholar
  25. 25.
    Bennun L, Njoroge P (2000) Important bird areas in Kenya. Ostrich 71:164–167.  https://doi.org/10.1080/00306525.2000.9639900 CrossRefGoogle Scholar
  26. 26.
    Pisano MB, Torres C, Re VE, Farias AA, Sanchez Seco MP, Tenorio A, Campos R, Contigiani MS (2014) Genetic and evolutionary characterization of Venezuelan equine encephalitis virus isolates from Argentina. Infect Genet Evol 26:72–79.  https://doi.org/10.1016/j.meegid.2014.05.011 CrossRefPubMedGoogle Scholar
  27. 27.
    Sahadeo NSD, Allicock OM, De Salazar PM, Auguste AJ, Widen S, Olowokure B, Gutierrez C, Valadere AM, Polson-Edwards K, Weaver SC, Carrington CVF (2017) Understanding the evolution and spread of chikungunya virus in the Americas using complete genome sequences. Virus Evol 3:vex010.  https://doi.org/10.1093/ve/vexo10 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Woelk CH, Holmes EC (2002) Reduced positive selection in vector-borne RNA viruses. Mol Biol Evol 19:2333–2336CrossRefPubMedGoogle Scholar
  29. 29.
    Moutailler S, Roche B, Thiberge JM, Caro V, Rougeon F, Failloux AB (2011) Host alternation is necessary to maintain the genome stability of rift valley fever virus. PLoS Negl Trop Dis 5:e1156.  https://doi.org/10.1371/journal.pntd.0001156 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Faith Sigei
    • 1
    Email author
  • Fredrick Nindo
    • 2
  • Silvanos Mukunzi
    • 3
  • Zipporah Ng’ang’a
    • 1
  • Rosemary Sang
    • 3
  1. 1.Jomo Kenyatta University of Agriculture and TechnologyNairobiKenya
  2. 2.Division of Computational Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
  3. 3.Centre for Virus ResearchKenya Medical Research InstituteNairobiKenya

Personalised recommendations