Advertisement

Archives of Virology

, Volume 163, Issue 9, pp 2451–2457 | Cite as

Discovery of a novel iflavirus sequence in the eastern paralysis tick Ixodes holocyclus

  • Caitlin A. O’Brien
  • Sonja Hall-Mendelin
  • Jody Hobson-Peters
  • Georgia Deliyannis
  • Andy Allen
  • Ala Lew-Tabor
  • Manuel Rodriguez-Valle
  • Dayana Barker
  • Stephen C. Barker
  • Roy A. Hall
Brief Report

Abstract

Ixodes holocyclus, the eastern paralysis tick, is a significant parasite in Australia in terms of animal and human health. However, very little is known about its virome. In this study, next-generation sequencing of I. holocyclus salivary glands yielded a full-length genome sequence which phylogenetically groups with viruses classified in the Iflaviridae family and shares 45% amino acid similarity with its closest relative Bole hyalomma asiaticum virus 1. The sequence of this virus, provisionally named Ixodes holocyclus iflavirus (IhIV) has been identified in tick populations from northern New South Wales and Queensland, Australia and represents the first virus sequence reported from I. holocyclus.

Notes

Acknowledgements

We thank Ulrike Munderloh (University of Minnesota, US) for providing the ISE6 cell line and advice on its culture. We are also grateful to Dr. Jeff Grabowski and Dr. Lesley Bell-Sakyi (Pirbright Institute, UK) for their advice on tick cell culture. We thank Dr Stuart Geard and colleagues of Moruya Veterinary Hospital, Moruya, NSW; Dr Kerry Jackson, Elizabeth Miller and colleagues of Morvet Animal Hospital, Moruya; and Drs Sara Bailey and David Mitchell, and Emily Small and colleagues of Snowy River Veterinary Clinic, Orbost, Vic, for pointing Stephen Barker and Dayana Barker to ticky areas in southern NSW and Victoria, and for helping us collect ticks.

Funding

This study was funded by the Australian Research Council DP120103994. Transcriptome analysis of I. holocyclus viscera and salivary glands was funded by the Australian Research Council linkage project LP120200836 and Elanco Animal Health.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Valles SM, Chen Y, Firth AE, Guérin DMA, Hashimoto Y, Herrero S, de Miranda JR, Ryabov E, Consortium IR (2017) ICTV virus taxonomy profile: Iflaviridae. J Gen Virol 98(4):527–528.  https://doi.org/10.1099/jgv.0.000757 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Shi M, Lin X-D, Tian J-H, Chen L-J, Chen X, Li C-X, Qin X-C, Li J, Cao J-P, Eden J-S, Buchmann J, Wang W, Xu J, Holmes EC, Zhang Y-Z (2016) Redefining the invertebrate RNA virosphere. Nature 540:539–543.  https://doi.org/10.1038/nature20167 CrossRefGoogle Scholar
  3. 3.
    Jackson J, Beveridge I, Chilton NB, Andrews RH (2007) Distributions of the paralysis ticks Ixodes cornuatus and Ixodes holocyclus in south-eastern Australia. Aust Vet J 85(10):420–424.  https://doi.org/10.1111/j.1751-0813.2007.00183.x CrossRefPubMedGoogle Scholar
  4. 4.
    Barker SC, Walker AR (2014) Ticks of Australia. The species that infest domestic animals and humans. Zootaxa 3816:1–144.  https://doi.org/10.11646/zootaxa.3816.1.1 CrossRefGoogle Scholar
  5. 5.
    Hall-Mendelin S, Craig SB, Hall RA, O’Donoghue P, Atwell RB, Tulsiani SM, Graham GC (2011) Tick paralysis in Australia caused by Ixodes holocyclus Neumann. Ann Trop Med Parasitol 105(2):95–106.  https://doi.org/10.1179/136485911x12899838413628 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chalada MJ, Stenos J, Bradbury RS (2016) Is there a Lyme-like disease in Australia? Summary of the findings to date. One Health 2:42–54.  https://doi.org/10.1016/j.onehlt.2016.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gofton AW, Doggett S, Ratchford A, Oskam CL, Paparini A, Ryan U, Irwin P (2016) Bacterial profiling reveals novel “Ca. Neoehrlichia”, Ehrlichia, and Anaplasma species in Australian human-biting ticks. PLoS One 10(12):e0145449.  https://doi.org/10.1371/journal.pone.0145449 CrossRefGoogle Scholar
  8. 8.
    Gladney WJ (1978) Ticks. In: Bram RA (ed) Surveillance and collection of arthropods of veterinary importance. U.S.D.A. Agriculture Handbook, vol 518. Animal and Plant Health Inspection Service, Washington, pp 102–113Google Scholar
  9. 9.
    Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39((Web Server issue)):W29–W37.  https://doi.org/10.1093/nar/gkr367 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong SY, Bateman A, Punta M, Attwood TK, Sigrist CJ, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale DA, Wu CH, Orengo C, Sillitoe I, Mi H, Thomas PD, Finn RD (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43((Database issue)):D213–221.  https://doi.org/10.1093/nar/gku1243 CrossRefPubMedGoogle Scholar
  11. 11.
    Warrilow D, Watterson D, Hall RA, Davis SS, Weir R, Kurucz N, Whelan P, Allcock R, Hall-Mendelin S, O’Brien CA, Hobson-Peters J (2014) A new species of mesonivirus from the Northern Territory, Australia. PLoS One.  https://doi.org/10.1371/journal.pone.0091103 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ong C, Rodriguez-Valle M, Moolhuijzen P, Barrero R, Hunter A, Szabo T, Bellgard M, Lew-Tabor A (2016) Exploring the transcriptomic data of the Australian paralysis tick, Ixodes holocyclus. GSTF J Vet Sci 3(1):1–10.  https://doi.org/10.7603/s40871-016-0001-y CrossRefGoogle Scholar
  13. 13.
    Munderloh UG, Kurtti TJ (1989) Formulation of medium for tick cell culture. Exp Appl Acarol 7(3):219–229CrossRefPubMedGoogle Scholar
  14. 14.
    McLean BJ, Hobson-Peters J, Webb CE, Watterson D, Prow NA, Nguyen HD, Hall-Mendelin S, Warrilow D, Johansen CA, Jansen CC, van den Hurk AF, Beebe NW, Schnettler E, Barnard RT, Hall RA (2015) A novel insect-specific flavivirus replicates only in Aedes-derived cells and persists at high prevalence in wild Aedes vigilax populations in Sydney, Australia. Virology 486:272–283.  https://doi.org/10.1016/j.virol.2015.07.021 CrossRefPubMedGoogle Scholar
  15. 15.
    Katoh K, Kuma K-I, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33(2):511–518.  https://doi.org/10.1093/nar/gki198 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Katoh K, Misawa K, K-i Kuma, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Miller M, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Paper presented at the Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, 14/11/2010Google Scholar
  18. 18.
    Murakami R, Suetsugu Y, Kobayashi T, Nakashima N (2013) The genome sequence and transmission of an iflavirus from the brown planthopper, Nilaparvata lugens. Virus Res 176(1–2):179–187.  https://doi.org/10.1016/j.virusres.2013.06.005 CrossRefPubMedGoogle Scholar
  19. 19.
    de Miranda JR, Dainat B, Locke B, Cordoni G, Berthoud H, Gauthier L, Neumann P, Budge GE, Ball BV, Stoltz DB (2010) Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.). J Gen Virol 91((Pt 10)):2524–2530.  https://doi.org/10.1099/vir.0.022434-0 CrossRefPubMedGoogle Scholar
  20. 20.
    Lanzi G, de Miranda JR, Boniotti MB, Cameron CE, Lavazza A, Capucci L, Camazine SM, Rossi C (2006) Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). J Virol 80(10):4998–5009.  https://doi.org/10.1128/jvi.80.10.4998-5009.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ryabov EV (2007) A novel virus isolated from the aphid Brevicoryne brassicae with similarity to Hymenoptera picorna-like viruses. J Gen Virol 88(Pt 9):2590–2595.  https://doi.org/10.1099/vir.0.83050-0 CrossRefPubMedGoogle Scholar
  22. 22.
    Ongus JR, Peters D, Bonmatin JM, Bengsch E, Vlak JM, van Oers MM (2004) Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J Gen Virol 85(Pt 12):3747–3755.  https://doi.org/10.1099/vir.0.80470-0 CrossRefPubMedGoogle Scholar
  23. 23.
    Choi JY, Kim Y-S, Wang Y, Shin SW, Kim I, Tao XY, Liu Q, Roh JY, Kim JS, Je YH (2012) Complete genome sequence of a novel picorna-like virus isolated from Spodoptera exigua. J Asia-Pac Entomol 15(2):259–263.  https://doi.org/10.1016/j.aspen.2012.01.006 CrossRefGoogle Scholar
  24. 24.
    Wang X, Zhang J, Lu J, Yi F, Liu C, Hu Y (2004) Sequence analysis and genomic organization of a new insect picorna-like virus, Ectropis obliqua picorna-like virus, isolated from Ectropis obliqua. J Gen Virol 85(5):1145–1151.  https://doi.org/10.1099/vir.0.19638-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Isawa H, Asano S, Sahara K, Iizuka T, Bando H (1998) Analysis of genetic information of an insect picorna-like virus, infectious flacherie virus of silkworm: evidence for evolutionary relationships among insect, mammalian and plant picorna(-like) viruses. Arch Virol 143(1):127–143CrossRefPubMedGoogle Scholar
  26. 26.
    Wu CY, Lo CF, Huang CJ, Yu HT, Wang CH (2002) The complete genome sequence of Perina nuda picorna-like virus, an insect-infecting RNA virus with a genome organization similar to that of the mammalian picornaviruses. Virology 294(2):312–323.  https://doi.org/10.1006/viro.2001.1344 CrossRefPubMedGoogle Scholar
  27. 27.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  28. 28.
    Luria N, Reingold V, Lachman O, Sela N, Dombrovsky A (2016) Extended phylogenetic analysis of a new Israeli isolate of Brevicoryne brassicae virus (BrBV-IL) suggests taxonomic revision of the genus Iflavirus. Virol J 13(1):1–5.  https://doi.org/10.1186/s12985-016-0500-z CrossRefGoogle Scholar
  29. 29.
    Munderloh UG, Liu Y, Wang M, Chen C, Kurtti TJ (1994) Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J Parasitol 80(4):533–543CrossRefPubMedGoogle Scholar
  30. 30.
    Barker SC, Walker AR, Campelo D (2014) A list of the 70 species of Australian ticks; diagnostic guides to and species accounts of Ixodes holocyclus (paralysis tick), Ixodes cornuatus (southern paralysis tick) and Rhipicephalus australis (Australian cattle tick); and consideration of the place of Australia in the evolution of ticks with comments on four controversial ideas. Int J Parasitol 44(12):941–953CrossRefPubMedGoogle Scholar
  31. 31.
    Barker SC, Murrell A (2008) Systematics and evolution of ticks with a list of valid genus and species names. In: Bowman AS, Nuttall PA (eds) Ticks: biology, disease and control. Cambridge University Press, Cambridge, New York, pp 1–39Google Scholar
  32. 32.
    Oliver JD, Chavez AS, Felsheim RF, Kurtti TJ, Munderloh UG (2015) An Ixodes scapularis cell line with a predominantly neuron-like phenotype. Exp Appl Acarol 66(3):427–442.  https://doi.org/10.1007/s10493-015-9908-1 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nakao R, Matsuno K, Qiu Y, Maruyama J, Eguchi N, Nao N, Kajihara M, Yoshii K, Sawa H, Takada A, Sugimoto C (2016) Putative RNA viral sequences detected in an Ixodes scapularis-derived cell line. Ticks Tick-borne Dis.  https://doi.org/10.1016/j.ttbdis.2016.10.005 CrossRefPubMedGoogle Scholar
  34. 34.
    Colmant AMG, Hobson-Peters J, Bielefeldt-Ohmann H, van den Hurk AF, Hall-Mendelin S, Chow WK, Johansen CA, Fros J, Simmonds P, Watterson D, Cazier C, Etebari K, Asgari S, Schulz BL, Beebe N, Vet LJ, Piyasena TBH, Nguyen H-D, Barnard RT, Hall RA (2017) A new clade of insect-specific flaviviruses from Australian anopheles mosquitoes displays species-specific host restriction. mSphere.  https://doi.org/10.1128/mSphere.00262-17 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Crochu S, Cook S, Attoui H, Charrel RN, De Chesse R, Belhouchet M, Lemasson J-J, de Micco P, de Lamballerie X (2004) Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J Gen Virol 85(7):1971–1980.  https://doi.org/10.1099/vir.0.79850-0 CrossRefPubMedGoogle Scholar
  36. 36.
    Holmes Edward C (2011) The evolution of endogenous viral elements. Cell Host Microbe 10(4):368–377.  https://doi.org/10.1016/j.chom.2011.09.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Caitlin A. O’Brien
    • 1
  • Sonja Hall-Mendelin
    • 2
  • Jody Hobson-Peters
    • 1
  • Georgia Deliyannis
    • 5
  • Andy Allen
    • 5
  • Ala Lew-Tabor
    • 3
  • Manuel Rodriguez-Valle
    • 3
  • Dayana Barker
    • 4
  • Stephen C. Barker
    • 4
  • Roy A. Hall
    • 1
  1. 1.Australian Infectious Diseases Research Centre, School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia
  2. 2.Public Health Virology, Forensic and Scientific ServicesQueensland HealthBrisbaneAustralia
  3. 3.Centre for Animal Science, Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandBrisbaneAustralia
  4. 4.School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
  5. 5.Zoetis Australia Research and ManufacturingSydneyAustralia

Personalised recommendations